Reproduction

Reproduction (or procreation) is the biological process by which new "offspring" individual organisms are produced from their "parents". Reproduction is a fundamental feature of all known life; each individual organism exists as the result of reproduction. The known methods of reproduction are broadly grouped into two main types: sexual and asexual.

In asexual reproduction, an individual can reproduce without involvement with another individual of that species. The division of a bacterial cell into two daughter cells is an example of asexual reproduction. Asexual reproduction is not, however, limited to single-celled organisms. Most plants have the ability to reproduce asexually and the ant species Mycocepurus smithii is thought to reproduce entirely by asexual means.

Sexual reproduction typically requires the involvement of two individuals or gametes, one each from opposite type of sex.

Contents

[hide]

Asexual reproduction

Asexual reproduction is the process by which an organism creates a genetically similar or identical copy of itself without a contribution of genetic material from another individual. Bacteria divide asexually via binary fission; viruses take control of host cells to produce more viruses; Hydras (invertebrates of the order Hydroidea) and yeasts are able to reproduce by budding. These organisms often do not possess different sexes, and they are capable of "splitting" themselves into two or more individuals. On the other hand, some of these species that are capable of reproducing asexually, like hydra, yeast (See Mating of yeasts] and jellyfish, may also reproduce sexually. For instance, most plants are capable of vegetative reproduction—reproduction without seeds or spores—but can also reproduce sexually. Likewise, bacteria may exchange genetic information by conjugation. Other ways of asexual reproduction include parthenogenesis, fragmentation and spore formation that involves only mitosis. Parthenogenesis (from the Greek παρθένος parthenos, "virgin", + γένεσις genesis, "creation") is the growth and development of embryo or seed without fertilization by a male. Parthenogenesis occurs naturally in some species, including lower plants (where it is called apomixis), invertebrates (e.g. water fleas, aphids, some bees and parasitic wasps), and vertebrates (e.g. some reptiles,[1] fish, and, very rarely, birds[2] and sharks[3]). It is sometimes also used to describe reproduction modes in hermaphroditic species which can self-fertilize.

Sexual reproduction

Sexual reproduction is a biological process by which organisms create descendants that have a combination of genetic material contributed from two (usually) different members of the species. (Self-fertilization requires only one organism.) Each of two parent organisms contributes half of the offspring's genetic makeup by creating haploid gametes. Most organisms form two different types of gametes. In these anisogamous species, the two sexes are referred to as male (producing sperm or microspores) and female (producing ova or megaspores). In isogamous species, the gametes are similar or identical in form (isogametes), but may have separable properties and then may be given other different names (see isogamy). For example, in the green alga, Chlamydomonas reinhardtii, there are so-called "plus" and "minus" gametes. A few types of organisms, such as ciliates, Paramecium aurelia, have more than two types of "sex", called syngens.[4]

Most animals (including humans) and plants reproduce sexually. Sexually reproducing organisms have different sets of genes for every trait (called alleles). Offspring inherit one allele for each trait from each parent, thereby ensuring that offspring have a combination of the parents' genes. Diploid having two copies of every gene within an organism, it is believed that "the masking of deleterious alleles favors the evolution of a dominant diploid phase in organisms that alternate between haploid and diploid phases" where recombination occurs freely.[5]

Bryophyte reproduces sexually but its commonly seen life forms are all haploid, which produce gametes. The zygotes of the gametes develop into sporangium, which produces haploid spores. The diploid stage is relatively short compared with that of haploid stage, i.e. haploid dominance. The advantage of diploid, e.g. heterosis, only takes place in diploid life stage. Bryophyte still maintains the sexual reproduction during its evolution despite the fact that the haploid stage does not benefit from heterosis at all. This may be an example that the sexual reproduction has a bigger advantage by itself, since it allows gene shuffling (hybrid or recombination between multiple loci) among different members of the species, that permits natural selection of the fit over these new hybrids or recombinants that are haploid forms.[6]

Allogamy

Allogamy is a term used in the field of biological reproduction describing the fertilization of an ovum from one individual with the spermatozoa of another.

Autogamy

Self-fertilization (also known as autogamy) occurs in hermaphroditic organisms where the two gametes fused in fertilization come from the same individual. They are bound and all the cells merge to form one new gamete.

Mitosis and meiosis

Mitosis and meiosis are an integral part of cell division. Mitosis occurs in somatic cells, while meiosis occurs in gametes.

Mitosis The resultant number of cells in mitosis is twice the number of original cells. The number of chromosomes in the daughter cells is the same as that of the parent cell.

Meiosis The resultant number of cells is four times the number of original cells. This results in cells with half the number of chromosomes present in the parent cell. A diploid cell duplicates itself, then undergoes two divisions (tetraploid to diploid to haploid), in the process forming four haploid cells. This process occurs in two phases, meiosis I and meiosis II.

Same-sex reproduction

In recent decades, developmental biologists have been researching and developing techniques to facilitate same-sex reproduction.[7] The obvious approaches, subject to a growing amount of activity, are female sperm and male eggs, with female sperm closer to being a reality for humans, given that Japanese scientists have already created female sperm for chickens. "However, the ratio of produced W chromosome-bearing (W-bearing) spermatozoa fell substantially below expectations. It is therefore concluded that most of the W-bearing PGC could not differentiate into spermatozoa because of restricted spermatogenesis."[8] In 2004, by altering the function of a few genes involved with imprinting, other Japanese scientists combined two mouse eggs to produce daughter mice.[9]

Reproductive strategies

There are a wide range of reproductive strategies employed by different species. Some animals, such as the human and Northern Gannet, do not reach sexual maturity for many years after birth and even then produce few offspring. Others reproduce quickly; but, under normal circumstances, most offspring do not survive to adulthood. For example, a rabbit (mature after 8 months) can produce 10–30 offspring per year, and a fruit fly (mature after 10–14 days) can produce up to 900 offspring per year. These two main strategies are known as K-selection (few offspring) and r-selection (many offspring). Which strategy is favoured by evolution depends on a variety of circumstances. Animals with few offspring can devote more resources to the nurturing and protection of each individual offspring, thus reducing the need for many offspring. On the other hand, animals with many offspring may devote fewer resources to each individual offspring; for these types of animals it is common for many offspring to die soon after birth, but enough individuals typically survive to maintain the population. Some organisms such as honey bees and fruit flies retain sperm in a process called sperm storage thereby increasing the duration of their fertility.

Other types of reproductive strategies

Polycyclic animals reproduce intermittently throughout their lives.

Semelparous organisms reproduce only once in their lifetime, such as annual plants (including all grain crops), and certain species of salmon, spiders, bamboos and centru plants. Often, they die shortly after reproduction. This is often associated with r-strategists.

Iteroparous organisms produce offspring in successive (e.g. annual or seasonal) cycles, such as perennial plants. Iteroparous animals survive over multiple seasons (or periodic condition changes). This is more associated with K-strategists.

Asexual vs. sexual reproduction

Organisms that reproduce through asexual reproduction tend to grow in number exponentially. However, because they rely on mutation for variations in their DNA, all members of the species have similar vulnerabilities. Organisms that reproduce sexually yield a smaller number of offspring, but the large amount of variation in their genes makes them less susceptible to disease.

Many organisms can reproduce sexually as well as asexually. Aphids, slime molds, sea anemones, some species of starfish (by fragmentation), and many plants are examples. When environmental factors are favorable, asexual reproduction is employed to exploit suitable conditions for survival such as an abundant food supply, adequate shelter, favorable climate, disease, optimum pH or a proper mix of other lifestyle requirements. Populations of these organisms increase exponentially via asexual reproductive strategies to take full advantage of the rich supply resources.

When food sources have been depleted, the climate becomes hostile, or individual survival is jeopardized by some other adverse change in living conditions, these organisms switch to sexual forms of reproduction. Sexual reproduction ensures a mixing of the gene pool of the species. The variations found in offspring of sexual reproduction allow some individuals to be better suited for survival and provide a mechanism for selective adaptation to occur. In addition, sexual reproduction usually results in the formation of a life stage that is able to endure the conditions that threaten the offspring of an asexual parent. Thus, seeds, spores, eggs, pupae, cysts or other "over-wintering" stages of sexual reproduction ensure the survival during unfavorable times and the organism can "wait out" adverse situations until a swing back to suitability occurs.

Life without reproduction

The existence of life without reproduction is the subject of some speculation. The biological study of how the origin of life led from non-reproducing elements to reproducing organisms is called abiogenesis. Whether or not there were several independent abiogenetic events, biologists believe that the last universal ancestor to all present life on earth lived about 3.5 billion years ago.

Today, some scientists have speculated about the possibility of creating life non-reproductively in the laboratory. Several scientists have succeeded in producing simple viruses from entirely non-living materials.[10] The virus is often regarded as not alive. Being nothing more than a bit of RNA or DNA in a protein capsule, they have no metabolism and can only replicate with the assistance of a hijacked cell's metabolic machinery.

The production of a truly living organism (e.g., a simple bacterium) with no ancestors would be a much more complex task, but may well be possible according to current biological knowledge. A synthetic genome has been transferred into an existing bacterium where it replaced the native DNA, resulting in the artificial production of a new M. mycoides organism.[11]

Lottery principle

Sexual reproduction has many drawbacks, since it requires far more energy than asexual reproduction and diverts the organisms from other pursuits, and there is some argument about why so many species use it.

George C. Williams used lottery tickets as an analogy in one explanation for the widespread use of sexual reproduction.[12] He argued that asexual reproduction, which produces little or no genetic variety in offspring, was like buying many tickets that all have the same number, limiting the chance of "winning" - that is, producing surviving offspring. Sexual reproduction, he argued, was like purchasing fewer tickets but with a greater variety of numbers and therefore a greater chance of success.

The point of this analogy is that since asexual reproduction does not produce genetic variations, there is little ability to quickly adapt to a changing environment. The lottery principle is less accepted these days because of evidence that asexual reproduction is more prevalent in unstable environments, the opposite of what it predicts.

See also

Notes

  1. ^ Halliday, Tim R.; Kraig Adler (eds.) (1986). Reptiles & Amphibians. Torstar Books. pp. 101. ISBN 0-920269-81-8. 
  2. ^ Savage, Thomas F. (September 12, 2005). "A Guide to the Recognition of Parthenogenesis in Incubated Turkey Eggs". Oregon State University. http://oregonstate.edu/Dept/animal-sciences/poultry/index.html. Retrieved 2006-10-11. 
  3. ^ "Female Sharks Can Reproduce Alone, Researchers Find", Washington Post, Wednesday, May 23, 2007; Page A02
  4. ^ T. M. Sonneborn. Mating Types in Paramecium Aurelia: Diverse Conditions for Mating in Different Stocks; Occurrence, Number and Interrelations of the Types. Proceedings of the American Philosophical Society, Vol. 79, No. 3 (Sep. 30, 1938), pp. 411-434. American Philosophical Society. JSTOR 984858. 
  5. ^ S. P. Otto and D. B. Goldstein. "Recombination and the Evolution of Diploidy". Genetics. Vol 131 (1992): 745-751.
  6. ^ TBA
  7. ^ "Timeline of same-sex procreation scientific developments". samesexprocreation.com. http://www.samesexprocreation.com/timeline.htm. 
  8. ^ Differentiation of female chicken primordial germ cells into spermatozoa in male gonads. doi:10.1046/j.1440-169X.1997.t01-2-00002.x. PMID 9227893. 
  9. ^ "Japanese scientists produce mice without using sperm". Washington Post (Sarasota Herald-Tribune). April 22, 2004. http://news.google.com/newspapers?id=nUIgAAAAIBAJ&sjid=wYQEAAAAIBAJ&pg=6950,1352704&dq=japanese+scientists+combine+two+mouse+eggs+to+produce+daughter+mice&hl=en. 
  10. ^ Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template
    Scientists Create Artificial Virus
  11. ^ Gibson, D.; Glass, J.; Lartigue, C.; Noskov, V.; Chuang, R.; Algire, M.; Benders, G.; Montague, M. et al. (2010). "Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome". Science 329 (5987): 52–56. Bibcode 2010Sci...329...52G. doi:10.1126/science.1190719. PMID 20488990.  edit
  12. ^ Williams G C. 1975. Sex and Evolution. Princeton (NJ): Princeton University Press.

References

Further reading

External links