Remote surgery (also known as telesurgery) is the ability for a doctor to perform surgery on a patient even though they are not physically in the same location. It is a form of telepresence. Remote surgery combines elements of robotics, cutting edge communication technology such as high-speed data connections and elements of management information systems. While the field of robotic surgery is fairly well established, most of these robots are controlled by surgeons at the location of the surgery. Remote surgery is essentially advanced telecommuting for surgeons, where the physical distance between the surgeon and the patient is immaterial. It promises to allow the expertise of specialized surgeons to be available to patients worldwide, without the need for patients to travel beyond their local hospital.
Contents |
One of the earliest remote surgeries was conducted on 7 September 2001 across the Atlantic Ocean, with a surgeon (Dr. Jacques Marescaux) in New York performing a cholecystectomy on a 68-year-old female patient 6,230 km away in Strasbourg, France named Operation Lindbergh.[1] That operation, called Project Lindbergh after Charles Lindbergh’s pioneering transatlantic flight from New York to Paris, was conducted over a dedicated fiberoptic link to ensure guaranteed connectivity and minimal lag.[2]
Since then, remote surgery has been conducted many times in numerous locations. To date Dr. Anvari, a laparoscopic surgeon in Hamilton, Canada, has conducted numerous remote surgeries on patients in North Bay, a city 400 kilometres from Hamilton. Even though he uses a VPN over a non-dedicated fiberoptic connection that shares bandwidth with regular telecommunications data, Dr. Anvari has not had any connection problems during his procedures.
Rapid development of technology has allowed remote surgery rooms to become highly specialized. At the Advanced Surgical Technology Centre at Mt. Sinai Hospital in Toronto, Canada, the surgical room responds to the surgeon’s voice commands in order to control a variety of equipment at the surgical site, including the lighting in the operating room, the position of the operating table and the surgical tools themselves. With continuing advances in communication technologies, the availability of greater bandwidth and more powerful computers, the ease and cost effectiveness of deploying remote surgery units is likely to increase rapidly.
The possibility of being able to project the knowledge and the physical skill of a surgeon over long distances has many attractions. There is considerable research underway in the subject. The armed forces have an obvious interest since the combination of telepresence, teleoperation, and telerobotics can potentially save the lives of battle casualties by providing them with prompt attention in mobile operating theatres.
Another potential advantage of having robots perform surgeries is accuracy. A study conducted at Guy’s Hospital in London, England compared the success of kidney surgeries in 304 dummy patients conducted traditionally as well as remotely and found that those conducted using robots were more successful in accurately targeting kidney stones [3].
As the techniques of expert surgeons are studied and stored in special computer systems, robots might one day be able to perform surgeries with little or no human input. Carlo Pappone, an Italian surgeon, has developed a software program that uses data collected from several surgeons and thousands of operations to perform the surgery without human intervention [4]. This could one day make expensive, complicated surgeries much more widely available, even to patients in regions which have traditionally lacked proper medical facilities.
The ability to carry out delicate manipulations relies greatly upon feedback. For example it is easy to learn how much pressure is required to handle an egg. In robotic surgery, surgeons need to be able to perceive the amount of force being applied without directly touching the surgical tools. Systems known as force-feedback, or Haptic technology, have been developed to simulate this. However these systems are very sensitive to time-delays such as those present in the networks used in remote surgery.
Being able to gauge the depth of an incision is crucial. Humans binocular vision make this easy in a three dimensional environment. However this can be much more difficult when the view is presented on a flat computer screen.
One possible use of remote surgery is the Trauma-Pod project conceived by the US military under the Defense Advanced Research Agency. This system is intended to aid wounded soldiers in the battlefield by making use of the skills of remotely located medical personnel.
Another future possibility could be the use of remote surgery during long space exploration missions.
For now, remote surgery is not a widespread technology in part because it does not have sponsorship by the governments. Before its acceptance on a broader scale, many issues will need to be resolved. For example, established clinical protocols, training, and global compatibility of equipment must be developed. Also, there is still the need for an anesthesiologist and a backup surgeon to be present in case there is a disruption of communications or a malfunction in the robot. Nevertheless, Operation Lindbergh proved that the technology exists today to enable delivery of expert care to remote areas of the globe.