9-orthoplex |
Rectified 9-orthoplex |
Birectified 9-orthoplex |
Trirectified 9-orthoplex |
Quadrirectified 9-cube |
Trirectified 9-cube |
Birectified 9-cube |
Rectified 9-cube |
9-cube |
|
Orthogonal projections in A9 Coxeter plane |
---|
In nine-dimensional geometry, a rectified 9-simplex is a convex uniform 9-polytope, being a rectification of the regular 9-orthoplex.
There are 9 rectifications of the 9-orthoplex. Vertices of the rectified 9-orthoplex are located at the edge-centers of the 9-orthoplex. Vertices of the birectified 9-orthoplex are located in the triangular face centers of the 9-orthoplex. Vertices of the trirectified 9-orthoplex are located in the tetrahedral cell centers of the 9-orthoplex.
These polytopes are part of a family 511 uniform 9-polytopes with BC9 symmetry.
Contents |
Rectified 9-orthoplex | |
---|---|
Type | uniform 9-polytope |
Schläfli symbol | t1{37,4} |
Coxeter-Dynkin diagrams | |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 2016 |
Vertices | 144 |
Vertex figure | 7-orthoplex prism |
Petrie polygon | octakaidecagon |
Coxeter groups | C9, [4,37] D9, [36,1,1] |
Properties | convex |
The rectified 9-orthoplex is the vertex figure for the demienneractic honeycomb.
There are two Coxeter groups associated with the rectified 9-orthoplex, one with the C9 or [4,37] Coxeter group, and a lower symmetry with two copies of 8-orthoplex facets, alternating, with the D9 or [36,1,1] Coxeter group.
Cartesian coordinates for the vertices of a rectified 9-orthoplex, centered at the origin, edge length are all permutations of:
Its 144 vertices represent the root vectors of the simple Lie group D9. When combined with the 18 vertices of the 9-orthoplex, these vertices represent the 162 root vectors of the B9 and C9 simple Lie groups.
B9 | B8 | B7 | |||
---|---|---|---|---|---|
[18] | [16] | [14] | |||
B6 | B5 | ||||
[12] | [10] | ||||
B4 | B3 | B2 | |||
[8] | [6] | [4] |
B9 | B8 | B7 | |||
---|---|---|---|---|---|
[18] | [16] | [14] | |||
B6 | B5 | ||||
[12] | [10] | ||||
B4 | B3 | B2 | |||
[8] | [6] | [4] |
B9 | B8 | B7 | |||
---|---|---|---|---|---|
[18] | [16] | [14] | |||
B6 | B5 | ||||
[12] | [10] | ||||
B4 | B3 | B2 | |||
[8] | [6] | [4] |