c-Raf

V-raf-1 murine leukemia viral oncogene homolog 1

PDB rendering based on 1c1y.
Identifiers
Symbols RAF1; CRAF; NS5; Raf-1; c-Raf
External IDs OMIM164760 MGI97847 HomoloGene48145 GeneCards: RAF1 Gene
EC number 2.7.11.1
RNA expression pattern
More reference expression data
Orthologs
Species Human Mouse
Entrez 5894 110157
Ensembl ENSG00000132155 ENSMUSG00000000441
UniProt P04049 Q3UR68
RefSeq (mRNA) NM_002880.3 NM_029780.3
RefSeq (protein) NP_002871.1 NP_084056.1
Location (UCSC) Chr 3:
12.63 – 12.71 Mb
Chr 6:
115.57 – 115.63 Mb
PubMed search [1] [2]

RAF proto-oncogene serine/threonine-protein kinase also known as proto-oncogene c-RAF or simply c-Raf is an enzyme[1] that in humans is encoded by the RAF1 gene.[2][3] The c-Raf protein functions in the MAPK/ERK signal transduction pathway as part of a protein kinase cascade. C-Raf is a member of the Raf kinase family of serine/threonine-specific protein kinases.

Contents

Function

c-Raf is a MAP kinase kinase kinase (MAP3K) that functions downstream of the Ras subfamily of membrane associated GTPases to which it binds directly. Once activated Raf-1 can phosphorylate to activate the dual specificity protein kinases MEK1 and MEK2, which, in turn, phosphorylate to activate the serine/threonine-specific protein kinases ERK1 and ERK2. Activated ERKs are pleiotropic effectors of cell physiology and play an important role in the control of gene expression involved in the cell division cycle, apoptosis, cell differentiation, and cell migration.[4]

Discovery and role in cancer

The first raf gene that was found was the oncogene v-raf.[5] Normal (non-oncogenic) cellular homologs of v-raf were soon found to be conserved components of eukaryotic genomes, and it was shown that they could mutate and become oncogenes.[6] A-Raf and B-Raf are two protein kinases with similar sequences to Raf-1. Mutations in B-Raf genes are found in several types of cancer. The Raf kinases are targets for anticancer drug development.[7] There are several quantitative immunochemical methods available to detect Raf kinase inhibiting drugs.[8]

Regulation of Raf kinase activity

Raf-1 was shown to bind efficiently to Ras only when Ras is bound to GTP, not GDP.[9] In the MAPK/ERK pathway Raf-1 becomes activated when it binds to Ras.[10] It is thought that phosphorylation of Raf-1 (at sites such as serine-338) upon binding of Raf-1 to Ras locks Raf-1 into an activated conformation that is then independent of binding to Ras for the continued activity of Raf-1.[11] Several MAPK kinase kinase kinases have been suggested to be important for phosphorylation of Raf-1 as well as positive feedback phosphorylation by MAPK (ERK).[12]

Binding of 14-3-3ζ to phosphorylated serine-259 of Raf-1 is associated with inhibition of Raf-1 kinase activity. As shown in the figure (to the right), it is thought that a 14-3-3 dimer can bind to two phosphoserines of Raf-1 when it is inactive. Dephosphorylation of serine-259 has been associated with activation of Raf-1.[13] In the model shown, the binding of GTP to Ras and the dephosphorylation of serine-259 of Raf-1 allows Raf-1 to take on a conformation that allows binding of Raf-1 to Ras-GTP. This represents a conformation in which Raf-1 can phosphorylate the downstream target MEK.

Targets of Raf-1

In the MAPK/ERK pathway Raf-1 phosphorylates and activates MEK, a MAPK kinase.[14] This allows Raf-1 to function as part of a kinase cascade: Raf-1 phosphorylates MEK, which phosphorylates MAPK (see MAPK/ERK pathway).

Interactions

C-Raf has been shown to interact with STUB1,[15] Retinoblastoma-like protein 2,[16] CFLAR,[17] CDC25A,[18][19] Retinoblastoma protein,[16][20] YWHAQ,[21][22][23][24] AKT1,[25] BRAF,[26] Bcl-2,[27] PAK1,[28] Prohibitin,[20] MAP2K1,[22] TSC22D3,[29] HRAS,[30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45][46] RHEB,[47][48][49] RAP1A,[40][50][51][52] Src,[53] Phosphatidylethanolamine binding protein 1,[22] Protein kinase Mζ,[23] GRB10,[54][55] KRAS,[35][36] MAPK7,[56] Heat shock protein 90kDa alpha (cytosolic), member A1,[15][57] ASK1,[58] FYN,[53] BAG1,[59] YWHAB,[23][34][60][61][62][63] MAPK8IP3,[64][65] YWHAZ,[23][66][67][68][69] YWHAH,[23][62][70] YWHAG,[21][23][71] YWHAE,[62][63] MAP3K1,[72] RRAS2[35][73] and SHOC2.[35]

See also

References

  1. ^ Li P, Wood K, Mamon H, Haser W, Roberts T (February 1991). "Raf-1: a kinase currently without a cause but not lacking in effects". Cell 64 (3): 479–82. doi:10.1016/0092-8674(91)90228-Q. PMID 1846778. 
  2. ^ Rapp UR, Goldsborough MD, Mark GE, Bonner TI, Groffen J, Reynolds FH, Stephenson JR (July 1983). "Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus". Proc. Natl. Acad. Sci. U.S.A. 80 (14): 4218–22. doi:10.1073/pnas.80.14.4218. PMC 384008. PMID 6308607. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=384008. 
  3. ^ Bonner T, O'Brien SJ, Nash WG, Rapp UR, Morton CC, Leder P (January 1984). "The human homologs of the raf (mil) oncogene are located on human chromosomes 3 and 4". Science 223 (4631): 71–4. doi:10.1126/science.6691137. PMID 6691137. 
  4. ^ "Entrez Gene: RAF1 v-raf-1 murine leukemia viral oncogene homolog 1". http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5894. 
  5. ^ Mark GE, Rapp UR (April 1984). "Primary structure of v-raf: relatedness to the src family of oncogenes". Science 224 (4646): 285–9. doi:10.1126/science.6324342. PMID 6324342. 
  6. ^ Shimizu K, Nakatsu Y, Nomoto S, Sekiguchi M (1986). "Structure of the activated c-raf-1 gene from human stomach cancer". Int. Symp. Princess Takamatsu Cancer Res. Fund 17: 85–91. PMID 2843497. 
  7. ^ Sridhar SS, Hedley D, Siu LL (April 2005). "Raf kinase as a target for anticancer therapeutics". Mol. Cancer Ther. 4 (4): 677–85. doi:10.1158/1535-7163.MCT-04-0297. PMID 15827342. 
  8. ^ Olive DM (October 2004). "Quantitative methods for the analysis of protein phosphorylation in drug development". Expert Rev Proteomics 1 (3): 327–41. doi:10.1586/14789450.1.3.327. PMID 15966829. http://biosupport.licor.com./docs/2005/Olive.pdf. 
  9. ^ Zhang XF, Settleman J, Kyriakis JM, Takeuchi-Suzuki E, Elledge SJ, Marshall MS, Bruder JT, Rapp UR, Avruch J (July 1993). "Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1". Nature 364 (6435): 308–13. doi:10.1038/364308a0. PMID 8332187. 
  10. ^ Terai K, Matsuda M (March 2005). "Ras binding opens c-Raf to expose the docking site for mitogen-activated protein kinase kinase". EMBO Rep. 6 (3): 251–5. doi:10.1038/sj.embor.7400349. PMC 1299259. PMID 15711535. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1299259. 
  11. ^ Avruch J, Khokhlatchev A, Kyriakis JM, Luo Z, Tzivion G, Vavvas D, Zhang XF (2001). "Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade". Recent Prog. Horm. Res. 56: 127–55. doi:10.1210/rp.56.1.127. PMID 11237210. 
  12. ^ Balan V, Leicht DT, Zhu J, Balan K, Kaplun A, Singh-Gupta V, Qin J, Ruan H, Comb MJ, Tzivion G (March 2006). "Identification of Novel In Vivo Raf-1 Phosphorylation Sites Mediating Positive Feedback Raf-1 Regulation by Extracellular Signal-regulated Kinase". Mol. Biol. Cell 17 (3): 1141–53. doi:10.1091/mbc.E04-12-1123. PMC 1382304. PMID 16407412. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1382304. 
  13. ^ Rodriguez-Viciana P, Oses-Prieto J, Burlingame A, Fried M, McCormick F (April 2006). "A phosphatase holoenzyme composed of Shoc2/Sur8 and the catalytic subunit of PP1 functions as an M-Ras effector to modulate Raf activity". Mol. Cell 22 (2): 217–30. doi:10.1016/j.molcel.2006.03.027. PMID 16630891. 
  14. ^ Kyriakis JM, App H, Zhang XF, Banerjee P, Brautigan DL, Rapp UR, Avruch J (July 1992). "Raf-1 activates MAP kinase-kinase". Nature 358 (6385): 417–21. doi:10.1038/358417a0. PMID 1322500. 
  15. ^ a b Dogan, Taner; Harms Gregory S, Hekman Mirko, Karreman Christiaan, Oberoi Tripat Kaur, Alnemri Emad S, Rapp Ulf R, Rajalingam Krishnaraj (Dec. 2008). "X-linked and cellular IAPs modulate the stability of C-RAF kinase and cell motility". Nat. Cell Biol. (England) 10 (12): 1447–55. doi:10.1038/ncb1804. PMID 19011619. 
  16. ^ a b Wang, S; Ghosh R N, Chellappan S P (Dec. 1998). "Raf-1 Physically Interacts with Rb and Regulates Its Function: a Link between Mitogenic Signaling and Cell Cycle Regulation". Mol. Cell. Biol. (UNITED STATES) 18 (12): 7487–98. ISSN 0270-7306. PMC 109329. PMID 9819434. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=109329. 
  17. ^ Kataoka, T; Budd R C, Holler N, Thome M, Martinon F, Irmler M, Burns K, Hahne M, Kennedy N, Kovacsovics M, Tschopp J (Jun. 2000). "The caspase-8 inhibitor FLIP promotes activation of NF-kappaB and Erk signaling pathways". Curr. Biol. (ENGLAND) 10 (11): 640–8. doi:10.1016/S0960-9822(00)00512-1. ISSN 0960-9822. PMID 10837247. 
  18. ^ Galaktionov, K; Jessus C, Beach D (May. 1995). "Raf1 interaction with Cdc25 phosphatase ties mitogenic signal transduction to cell cycle activation". Genes Dev. (UNITED STATES) 9 (9): 1046–58. doi:10.1101/gad.9.9.1046. ISSN 0890-9369. PMID 7744247. 
  19. ^ Huang, T S; Shu C H, Yang W K, Whang-Peng J (Jul. 1997). "Activation of CDC 25 phosphatase and CDC 2 kinase involved in GL331-induced apoptosis". Cancer Res. (UNITED STATES) 57 (14): 2974–8. ISSN 0008-5472. PMID 9230211. 
  20. ^ a b Wang, S; Nath N, Fusaro G, Chellappan S (Nov. 1999). "Rb and Prohibitin Target Distinct Regions of E2F1 for Repression and Respond to Different Upstream Signals". Mol. Cell. Biol. (UNITED STATES) 19 (11): 7447–60. ISSN 0270-7306. PMC 84738. PMID 10523633. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=84738. 
  21. ^ a b Ewing, Rob M; Chu Peter, Elisma Fred, Li Hongyan, Taylor Paul, Climie Shane, McBroom-Cerajewski Linda, Robinson Mark D, O'Connor Liam, Li Michael, Taylor Rod, Dharsee Moyez, Ho Yuen, Heilbut Adrian, Moore Lynda, Zhang Shudong, Ornatsky Olga, Bukhman Yury V, Ethier Martin, Sheng Yinglun, Vasilescu Julian, Abu-Farha Mohamed, Lambert Jean-Philippe, Duewel Henry S, Stewart Ian I, Kuehl Bonnie, Hogue Kelly, Colwill Karen, Gladwish Katharine, Muskat Brenda, Kinach Robert, Adams Sally-Lin, Moran Michael F, Morin Gregg B, Topaloglou Thodoros, Figeys Daniel (2007). "Large-scale mapping of human protein–protein interactions by mass spectrometry". Mol. Syst. Biol. (England) 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1847948. 
  22. ^ a b c Yeung, K; Janosch P, McFerran B, Rose D W, Mischak H, Sedivy J M, Kolch W (May. 2000). "Mechanism of Suppression of the Raf/MEK/Extracellular Signal-Regulated Kinase Pathway by the Raf Kinase Inhibitor Protein". Mol. Cell. Biol. (UNITED STATES) 20 (9): 3079–85. doi:10.1128/MCB.20.9.3079-3085.2000. ISSN 0270-7306. PMC 85596. PMID 10757792. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=85596. 
  23. ^ a b c d e f Van Der Hoeven, P C; Van Der Wal J C, Ruurs P, Van Dijk M C, Van Blitterswijk J (Jan. 2000). "14-3-3 isotypes facilitate coupling of protein kinase C-zeta to Raf-1: negative regulation by 14-3-3 phosphorylation". Biochem. J. (ENGLAND) 345 Pt 2 (Pt 2): 297–306. ISSN 0264-6021. PMC 1220759. PMID 10620507. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1220759. 
  24. ^ Liu, Y C; Elly C, Yoshida H, Bonnefoy-Berard N, Altman A (Jun. 1996). "Activation-modulated association of 14-3-3 proteins with Cbl in T cells". J. Biol. Chem. (UNITED STATES) 271 (24): 14591–5. doi:10.1074/jbc.271.24.14591. ISSN 0021-9258. PMID 8663231. 
  25. ^ Zimmermann, S; Moelling K (Nov. 1999). "Phosphorylation and regulation of Raf by Akt (protein kinase B)". Science (UNITED STATES) 286 (5445): 1741–4. doi:10.1126/science.286.5445.1741. ISSN 0036-8075. PMID 10576742. 
  26. ^ Weber, C K; Slupsky J R, Kalmes H A, Rapp U R (May. 2001). "Active Ras induces heterodimerization of cRaf and BRaf". Cancer Res. (United States) 61 (9): 3595–8. ISSN 0008-5472. PMID 11325826. 
  27. ^ Wang, H G; Rapp U R, Reed J C (Nov. 1996). "Bcl-2 targets the protein kinase Raf-1 to mitochondria". Cell (UNITED STATES) 87 (4): 629–38. doi:10.1016/S0092-8674(00)81383-5. ISSN 0092-8674. PMID 8929532. 
  28. ^ Zang, Mengwei; Hayne Cynthia, Luo Zhijun (Feb. 2002). "Interaction between active Pak1 and Raf-1 is necessary for phosphorylation and activation of Raf-1". J. Biol. Chem. (United States) 277 (6): 4395–405. doi:10.1074/jbc.M110000200. ISSN 0021-9258. PMID 11733498. 
  29. ^ Ayroldi, Emira; Zollo Ornella, Macchiarulo Antonio, Di Marco Barbara, Marchetti Cristina, Riccardi Carlo (Nov. 2002). "Glucocorticoid-Induced Leucine Zipper Inhibits the Raf-Extracellular Signal-Regulated Kinase Pathway by Binding to Raf-1". Mol. Cell. Biol. (United States) 22 (22): 7929–41. doi:10.1128/MCB.22.22.7929-7941.2002. ISSN 0270-7306. PMC 134721. PMID 12391160. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=134721. 
  30. ^ Stang, S; Bottorff D, Stone J C (Jun. 1997). "Interaction of activated Ras with Raf-1 alone may be sufficient for transformation of rat2 cells". Mol. Cell. Biol. (UNITED STATES) 17 (6): 3047–55. ISSN 0270-7306. PMC 232157. PMID 9154803. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=232157. 
  31. ^ Germani, Antonia; Prabel Audrey, Mourah Samia, Podgorniak Marie-Pierre, Di Carlo Anna, Ehrlich Ricardo, Gisselbrecht Sylvie, Varin-Blank Nadine, Calvo Fabien, Bruzzoni-Giovanelli Heriberto (Dec. 2003). "SIAH-1 interacts with CtIP and promotes its degradation by the proteasome pathway". Oncogene (England) 22 (55): 8845–51. doi:10.1038/sj.onc.1206994. ISSN 0950-9232. PMID 14654780. 
  32. ^ Mitin, Natalia Y; Ramocki Melissa B, Zullo Alfred J, Der Channing J, Konieczny Stephen F, Taparowsky Elizabeth J (May. 2004). "Identification and characterization of rain, a novel Ras-interacting protein with a unique subcellular localization". J. Biol. Chem. (United States) 279 (21): 22353–61. doi:10.1074/jbc.M312867200. ISSN 0021-9258. PMID 15031288. 
  33. ^ Vargiu, Pierfrancesco; De Abajo Ricardo, Garcia-Ranea Juan Antonio, Valencia Alfonso, Santisteban Pilar, Crespo Piero, Bernal Juan (Jan. 2004). "The small GTP-binding protein, Rhes, regulates signal transduction from G protein-coupled receptors". Oncogene (England) 23 (2): 559–68. doi:10.1038/sj.onc.1207161. ISSN 0950-9232. PMID 14724584. 
  34. ^ a b Yuryev, Anton; Wennogle Lawrence P (Feb. 2003). "Novel raf kinase protein-protein interactions found by an exhaustive yeast two-hybrid analysis". Genomics (United States) 81 (2): 112–25. doi:10.1016/S0888-7543(02)00008-3. ISSN 0888-7543. PMID 12620389. 
  35. ^ a b c d Li, W; Han M, Guan K L (Apr. 2000). "The leucine-rich repeat protein SUR-8 enhances MAP kinase activation and forms a complex with Ras and Raf". Genes Dev. (UNITED STATES) 14 (8): 895–900. ISSN 0890-9369. PMC 316541. PMID 10783161. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=316541. 
  36. ^ a b Kiyono, M; Kato J, Kataoka T, Kaziro Y, Satoh T (Sep. 2000). "Stimulation of Ras guanine nucleotide exchange activity of Ras-GRF1/CDC25(Mm) upon tyrosine phosphorylation by the Cdc42-regulated kinase ACK1". J. Biol. Chem. (UNITED STATES) 275 (38): 29788–93. doi:10.1074/jbc.M001378200. ISSN 0021-9258. PMID 10882715. 
  37. ^ Janoueix-Lerosey, I; Pasheva E, de Tand M F, Tavitian A, de Gunzburg J (Mar. 1998). "Identification of a specific effector of the small GTP-binding protein Rap2". Eur. J. Biochem. (GERMANY) 252 (2): 290–8. doi:10.1046/j.1432-1327.1998.2520290.x. ISSN 0014-2956. PMID 9523700. 
  38. ^ Boettner, B; Govek E E, Cross J, Van Aelst L (Aug. 2000). "The junctional multidomain protein AF-6 is a binding partner of the Rap1A GTPase and associates with the actin cytoskeletal regulator profilin". Proc. Natl. Acad. Sci. U.S.A. (UNITED STATES) 97 (16): 9064–9. doi:10.1073/pnas.97.16.9064. ISSN 0027-8424. PMC 16822. PMID 10922060. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=16822. 
  39. ^ Karbowniczek, Magdalena; Robertson Gavin P, Henske Elizabeth Petri (Sep. 2006). "Rheb inhibits C-raf activity and B-raf/C-raf heterodimerization". J. Biol. Chem. (United States) 281 (35): 25447–56. doi:10.1074/jbc.M605273200. ISSN 0021-9258. PMID 16803888. 
  40. ^ a b Han, L; Colicelli J (Mar. 1995). "A human protein selected for interference with Ras function interacts directly with Ras and competes with Raf1". Mol. Cell. Biol. (UNITED STATES) 15 (3): 1318–23. ISSN 0270-7306. PMC 230355. PMID 7862125. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=230355. 
  41. ^ Jelinek, T; Catling A D, Reuter C W, Moodie S A, Wolfman A, Weber M J (Dec. 1994). "RAS and RAF-1 form a signalling complex with MEK-1 but not MEK-2". Mol. Cell. Biol. (UNITED STATES) 14 (12): 8212–8. ISSN 0270-7306. PMC 359360. PMID 7969158. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=359360. 
  42. ^ Romero, F; Martínez-A C, Camonis J, Rebollo A (Jun. 1999). "Aiolos transcription factor controls cell death in T cells by regulating Bcl-2 expression and its cellular localization". EMBO J. (ENGLAND) 18 (12): 3419–30. doi:10.1093/emboj/18.12.3419. ISSN 0261-4189. PMC 1171421. PMID 10369681. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1171421. 
  43. ^ Morcos, P; Thapar N, Tusneem N, Stacey D, Tamanoi F (May. 1996). "Identification of neurofibromin mutants that exhibit allele specificity or increased Ras affinity resulting in suppression of activated ras alleles". Mol. Cell. Biol. (UNITED STATES) 16 (5): 2496–503. ISSN 0270-7306. PMC 231238. PMID 8628317. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=231238. 
  44. ^ Hu, C D; Kariya K, Tamada M, Akasaka K, Shirouzu M, Yokoyama S, Kataoka T (Dec. 1995). "Cysteine-rich region of Raf-1 interacts with activator domain of post-translationally modified Ha-Ras". J. Biol. Chem. (UNITED STATES) 270 (51): 30274–7. doi:10.1074/jbc.270.51.30274. ISSN 0021-9258. PMID 8530446. 
  45. ^ Rodriguez-Viciana, P; Warne P H, Khwaja A, Marte B M, Pappin D, Das P, Waterfield M D, Ridley A, Downward J (May. 1997). "Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras". Cell (UNITED STATES) 89 (3): 457–67. doi:10.1016/S0092-8674(00)80226-3. ISSN 0092-8674. PMID 9150145. 
  46. ^ Huang, Yang Z; Zang Mengwei, Xiong Wen C, Luo Zhijun, Mei Lin (Jan. 2003). "Erbin suppresses the MAP kinase pathway". J. Biol. Chem. (United States) 278 (2): 1108–14. doi:10.1074/jbc.M205413200. ISSN 0021-9258. PMID 12379659. 
  47. ^ Long, Xiaomeng; Lin Yenshou, Ortiz-Vega Sara, Yonezawa Kazuyoshi, Avruch Joseph (Apr. 2005). "Rheb binds and regulates the mTOR kinase". Curr. Biol. (England) 15 (8): 702–13. doi:10.1016/j.cub.2005.02.053. ISSN 0960-9822. PMID 15854902. 
  48. ^ Karbowniczek, Magdalena; Cash Timothy, Cheung Mitchell, Robertson Gavin P, Astrinidis Aristotelis, Henske Elizabeth Petri (Jul. 2004). "Regulation of B-Raf kinase activity by tuberin and Rheb is mammalian target of rapamycin (mTOR)-independent". J. Biol. Chem. (United States) 279 (29): 29930–7. doi:10.1074/jbc.M402591200. ISSN 0021-9258. PMID 15150271. 
  49. ^ Yee, W M; Worley P F (Feb. 1997). "Rheb interacts with Raf-1 kinase and may function to integrate growth factor- and protein kinase A-dependent signals". Mol. Cell. Biol. (UNITED STATES) 17 (2): 921–33. ISSN 0270-7306. PMC 231818. PMID 9001246. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=231818. 
  50. ^ Nassar, N; Horn G, Herrmann C, Scherer A, McCormick F, Wittinghofer A (Jun. 1995). "The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue". Nature (ENGLAND) 375 (6532): 554–60. doi:10.1038/375554a0. ISSN 0028-0836. PMID 7791872. 
  51. ^ Hu, C D; Kariya K, Okada T, Qi X, Song C, Kataoka T (Jan. 1999). "Effect of phosphorylation on activities of Rap1A to interact with Raf-1 and to suppress Ras-dependent Raf-1 activation". J. Biol. Chem. (UNITED STATES) 274 (1): 48–51. doi:10.1074/jbc.274.1.48. ISSN 0021-9258. PMID 9867809. 
  52. ^ Okada, T; Hu C D, Jin T G, Kariya K, Yamawaki-Kataoka Y, Kataoka T (Sep. 1999). "The Strength of Interaction at the Raf Cysteine-Rich Domain Is a Critical Determinant of Response of Raf to Ras Family Small GTPases". Mol. Cell. Biol. (UNITED STATES) 19 (9): 6057–64. ISSN 0270-7306. PMC 84512. PMID 10454553. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=84512. 
  53. ^ a b Cleghon, V; Morrison D K (Jul. 1994). "Raf-1 interacts with Fyn and Src in a non-phosphotyrosine-dependent manner". J. Biol. Chem. (UNITED STATES) 269 (26): 17749–55. ISSN 0021-9258. PMID 7517401. 
  54. ^ Nantel, A; Huber M, Thomas D Y (Dec. 1999). "Localization of endogenous Grb10 to the mitochondria and its interaction with the mitochondrial-associated Raf-1 pool". J. Biol. Chem. (UNITED STATES) 274 (50): 35719–24. doi:10.1074/jbc.274.50.35719. ISSN 0021-9258. PMID 10585452. 
  55. ^ Nantel, A; Mohammad-Ali K, Sherk J, Posner B I, Thomas D Y (Apr. 1998). "Interaction of the Grb10 adapter protein with the Raf1 and MEK1 kinases". J. Biol. Chem. (UNITED STATES) 273 (17): 10475–84. doi:10.1074/jbc.273.17.10475. ISSN 0021-9258. PMID 9553107. 
  56. ^ English, J M; Pearson G, Hockenberry T, Shivakumar L, White M A, Cobb M H (Oct. 1999). "Contribution of the ERK5/MEK5 pathway to Ras/Raf signaling and growth control". J. Biol. Chem. (UNITED STATES) 274 (44): 31588–92. doi:10.1074/jbc.274.44.31588. ISSN 0021-9258. PMID 10531364. 
  57. ^ Stancato, L F; Chow Y H, Hutchison K A, Perdew G H, Jove R, Pratt W B (Oct. 1993). "Raf exists in a native heterocomplex with hsp90 and p50 that can be reconstituted in a cell-free system". J. Biol. Chem. (UNITED STATES) 268 (29): 21711–6. ISSN 0021-9258. PMID 8408024. 
  58. ^ Chen, J; Fujii K, Zhang L, Roberts T, Fu H (Jul. 2001). "Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK–ERK independent mechanism". Proc. Natl. Acad. Sci. U.S.A. (United States) 98 (14): 7783–8. doi:10.1073/pnas.141224398. ISSN 0027-8424. PMC 35419. PMID 11427728. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=35419. 
  59. ^ Wang, H G; Takayama S, Rapp U R, Reed J C (Jul. 1996). "Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1". Proc. Natl. Acad. Sci. U.S.A. (UNITED STATES) 93 (14): 7063–8. doi:10.1073/pnas.93.14.7063. ISSN 0027-8424. PMC 38936. PMID 8692945. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=38936. 
  60. ^ Truong, Amy B; Masters Shane C, Yang Hongzhu, Fu Haian (Nov. 2002). "Role of the 14-3-3 C-terminal loop in ligand interaction". Proteins (United States) 49 (3): 321–5. doi:10.1002/prot.10210. PMID 12360521. 
  61. ^ Yuryev, A; Ono M, Goff S A, Macaluso F, Wennogle L P (Jul. 2000). "Isoform-Specific Localization of A-RAF in Mitochondria". Mol. Cell. Biol. (UNITED STATES) 20 (13): 4870–8. doi:10.1128/MCB.20.13.4870-4878.2000. ISSN 0270-7306. PMC 85938. PMID 10848612. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=85938. 
  62. ^ a b c Vincenz, C; Dixit V M (Aug. 1996). "14-3-3 proteins associate with A20 in an isoform-specific manner and function both as chaperone and adapter molecules". J. Biol. Chem. (UNITED STATES) 271 (33): 20029–34. doi:10.1074/jbc.271.33.20029. ISSN 0021-9258. PMID 8702721. 
  63. ^ a b Conklin, D S; Galaktionov K, Beach D (Aug. 1995). "14-3-3 proteins associate with cdc25 phosphatases". Proc. Natl. Acad. Sci. U.S.A. (UNITED STATES) 92 (17): 7892–6. doi:10.1073/pnas.92.17.7892. ISSN 0027-8424. PMC 41252. PMID 7644510. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=41252. 
  64. ^ Kuboki, Y; Ito M, Takamatsu N, Yamamoto K I, Shiba T, Yoshioka K (Dec. 2000). "A scaffold protein in the c-Jun NH2-terminal kinase signaling pathways suppresses the extracellular signal-regulated kinase signaling pathways". J. Biol. Chem. (UNITED STATES) 275 (51): 39815–8. doi:10.1074/jbc.C000403200. ISSN 0021-9258. PMID 11044439. 
  65. ^ Ito, M; Yoshioka K, Akechi M, Yamashita S, Takamatsu N, Sugiyama K, Hibi M, Nakabeppu Y, Shiba T, Yamamoto K I (Nov. 1999). "JSAP1, a Novel Jun N-Terminal Protein Kinase (JNK)-Binding Protein That Functions as a Scaffold Factor in the JNK Signaling Pathway". Mol. Cell. Biol. (UNITED STATES) 19 (11): 7539–48. ISSN 0270-7306. PMC 84763. PMID 10523642. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=84763. 
  66. ^ Clark, G J; Drugan J K, Rossman K L, Carpenter J W, Rogers-Graham K, Fu H, Der C J, Campbell S L (Aug. 1997). "14-3-3 zeta negatively regulates raf-1 activity by interactions with the Raf-1 cysteine-rich domain". J. Biol. Chem. (UNITED STATES) 272 (34): 20990–3. doi:10.1074/jbc.272.34.20990. ISSN 0021-9258. PMID 9261098. 
  67. ^ Tzivion, G; Luo Z J, Avruch J (Sep. 2000). "Calyculin A-induced vimentin phosphorylation sequesters 14-3-3 and displaces other 14-3-3 partners in vivo". J. Biol. Chem. (UNITED STATES) 275 (38): 29772–8. doi:10.1074/jbc.M001207200. ISSN 0021-9258. PMID 10887173. 
  68. ^ Koyama, S; Williams L T, Kikuchi A (Jul. 1995). "Characterization of the interaction of Raf-1 with ras p21 or 14-3-3 protein in intact cells". FEBS Lett. (NETHERLANDS) 368 (2): 321–5. doi:10.1016/0014-5793(95)00686-4. ISSN 0014-5793. PMID 7628630. 
  69. ^ Chow, C W; Davis R J (Jan. 2000). "Integration of Calcium and Cyclic AMP Signaling Pathways by 14-3-3". Mol. Cell. Biol. (UNITED STATES) 20 (2): 702–12. doi:10.1128/MCB.20.2.702-712.2000. ISSN 0270-7306. PMC 85175. PMID 10611249. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=85175. 
  70. ^ Ichimura, Tohru; Wakamiya-Tsuruta Akiko, Itagaki Chiharu, Taoka Masato, Hayano Toshiya, Natsume Tohru, Isobe Toshiaki (Apr. 2002). "Phosphorylation-dependent interaction of kinesin light chain 2 and the 14-3-3 protein". Biochemistry (United States) 41 (17): 5566–72. doi:10.1021/bi015946f. ISSN 0006-2960. PMID 11969417. 
  71. ^ Autieri, M V; Carbone C J (Jul. 1999). "14-3-3Gamma interacts with and is phosphorylated by multiple protein kinase C isoforms in PDGF-stimulated human vascular smooth muscle cells". DNA Cell Biol. (UNITED STATES) 18 (7): 555–64. doi:10.1089/104454999315105. ISSN 1044-5498. PMID 10433554. 
  72. ^ Karandikar, M; Xu S, Cobb M H (Dec. 2000). "MEKK1 binds raf-1 and the ERK2 cascade components". J. Biol. Chem. (UNITED STATES) 275 (51): 40120–7. doi:10.1074/jbc.M005926200. ISSN 0021-9258. PMID 10969079. 
  73. ^ Movilla, N; Crespo P, Bustelo X R (Oct. 1999). "Signal transduction elements of TC21, an oncogenic member of the R-Ras subfamily of GTP-binding proteins". Oncogene (ENGLAND) 18 (43): 5860–9. doi:10.1038/sj.onc.1202968. ISSN 0950-9232. PMID 10557073. 

External links

Further reading