In mathematics, specifically in ring theory, an algebra over a commutative ring is a generalization of the concept of an algebra over a field, where the base field K is replaced by a commutative ring R.
In this article, all rings are assumed to be unital.
Contents |
Let R be a commutative ring. An algebra is an R-module A together with a binary operation [·, ·]
called A-multiplication, which satisfies the following axiom:
If A is a monoid under A-multiplication (it satisfies associativity and it has an identity), then the R-algebra is called an associative algebra. An associative algebra forms a ring over R and provides a generalization of a ring. An equivalent definition of an associative R-algebra is a ring homomorphism such that the image of f is contained in the center of A.