In descriptive statistics, the quartiles of a set of values are the three points that divide the data set into four equal groups, each representing a fourth of the population being sampled. A quartile is a type of quantile.
In epidemiology, sociology and finance, the quartiles of a population are the four subpopulations defined by classifying individuals according to whether the value concerned falls into one of the four ranges defined by the three values discussed above. Thus an individual item might be described as being "in the upper quartile".
Contents |
The difference between the upper and lower quartiles is called the interquartile range.
There is no universal agreement on choosing the quartile values.[1]
One standard formula for locating the position of the observation at a given percentile, y, with n data points sorted in ascending order is:[2]
This rule is employed by the TI-83 calculator boxplot and "1-Var Stats" functions.
Data Set: 6, 47, 49, 15, 42, 41, 7, 39, 43, 40, 36
Ordered Data Set: 6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49
Method 1 | Method 2 |
---|---|
Ordered Data Set: 7, 15, 36, 39, 40, 41
Method 1 | Method 2 |
---|---|
There are methods by which to check for outliers in the discipline of statistics and statistical analysis. As is the basic idea of descriptive statistics, when encountered with an outlier, we have to explain this by further analysis of the cause or origin of the outlier. In cases of extreme observations, which are not an infrequent occurrence, the typical values must be analyzed. In the case of quartiles, the Interquartile Range (IQR) may be used to characterize the data when there may be extremeties that skew the data; the interquartile range is a relatively robust statistic (also sometimes called "resistance") compared to the range and standard deviation. There is also a mathematical method to check for outliers and determining "fences", upper and lower limits from which to check for outliers.
After determining the first and third quartiles and the interquartile range as outlined above, then determining the fences using the following formula:
where Q1 and Q3 are the first and third quartiles, respectively. The Lower fence is the "lower limit" and the Upper fence is the "upper limit" of data, and any data lying outside this defined bounds can be considered an outlier. Anything below the Lower fence or above the Upper fence can be considered such a case. The fences provide a guideline by which to define an outlier, which may be defined in other ways. The fences define a "range" outside of which an outlier exists; a way to picture this is a boundary of a fence, outside of which are "outsiders" as opposed to outliers.