QARS
Glutaminyl-tRNA synthetase is an enzyme that in humans is encoded by the QARS gene.[1][2][3]
Aminoacyl-tRNA synthetases catalyze the aminoacylation of tRNA by their cognate amino acid. Because of their central role in linking amino acids with nucleotide triplets contained in tRNAs, aminoacyl-tRNA synthetases are thought to be among the first proteins that appeared in evolution. In metazoans, 9 aminoacyl-tRNA synthetases specific for glutamine (gln), glutamic acid (glu), and 7 other amino acids are associated within a multienzyme complex. Although present in eukaryotes, glutaminyl-tRNA synthetase (QARS) is absent from many prokaryotes, mitochondria, and chloroplasts, in which Gln-tRNA(Gln) is formed by transamidation of the misacylated Glu-tRNA(Gln). Glutaminyl-tRNA synthetase belongs to the class-I aminoacyl-tRNA synthetase family.[3]
Interactions
QARS has been shown to interact with RARS.[4]
References
- ^ Lamour V, Quevillon S, Diriong S, N'Guyen VC, Lipinski M, Mirande M (Oct 1994). "Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer". Proc Natl Acad Sci U S A 91 (18): 8670–8674. doi:10.1073/pnas.91.18.8670. PMC 44668. PMID 8078941. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=44668.
- ^ Durkin ME, Jager AC, Khurana TS, Nielsen FC, Albrechtsen R, Wewer UM (Jul 1999). "Characterization of the human laminin beta2 chain locus (LAMB2): linkage to a gene containing a nonprocessed, transcribed LAMB2-like pseudogene (LAMB2L) and to the gene encoding glutaminyl tRNA synthetase (QARS)". Cytogenet Cell Genet 84 (3–4): 173–178. doi:10.1159/000015249. PMID 10393422.
- ^ a b "Entrez Gene: QARS glutaminyl-tRNA synthetase". http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5859.
- ^ Kim, T; Park S G, Kim J E, Seol W, Ko Y G, Kim S (Jul. 2000). "Catalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex". J. Biol. Chem. (UNITED STATES) 275 (28): 21768–21772. doi:10.1074/jbc.M002404200. ISSN 0021-9258. PMID 10801842.
Further reading
- Norcum MT (1991). "Structural analysis of the high molecular mass aminoacyl-tRNA synthetase complex. Effects of neutral salts and detergents". J. Biol. Chem. 266 (23): 15398–405. PMID 1651330.
- Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene 138 (1–2): 171–174. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene 200 (1–2): 149–156. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
- Quevillon S, Robinson JC, Berthonneau E et al. (1999). "Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein". J. Mol. Biol. 285 (1): 183–195. doi:10.1006/jmbi.1998.2316. PMID 9878398.
- Ko YG, Kang YS, Kim EK et al. (2000). "Nucleolar localization of human methionyl-tRNA synthetase and its role in ribosomal RNA synthesis". J. Cell Biol. 149 (3): 567–574. doi:10.1083/jcb.149.3.567. PMC 2174846. PMID 10791971. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2174846.
- Kim T, Park SG, Kim JE et al. (2000). "Catalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex". J. Biol. Chem. 275 (28): 21768–21772. doi:10.1074/jbc.M002404200. PMID 10801842.
- Kang J, Kim T, Ko YG et al. (2000). "Heat shock protein 90 mediates protein-protein interactions between human aminoacyl-tRNA synthetases". J. Biol. Chem. 275 (41): 31682–31688. doi:10.1074/jbc.M909965199. PMID 10913161.
- Ko YG, Kim EY, Kim T et al. (2001). "Glutamine-dependent antiapoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1". J. Biol. Chem. 276 (8): 6030–6036. doi:10.1074/jbc.M006189200. PMID 11096076.
- Strausberg RL, Feingold EA, Grouse LH et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–16903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=139241.
- Lehner B, Semple JI, Brown SE et al. (2004). "Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region". Genomics 83 (1): 153–167. doi:10.1016/S0888-7543(03)00235-0. PMID 14667819.
- Ota T, Suzuki Y, Nishikawa T et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–45. doi:10.1038/ng1285. PMID 14702039.
- Colland F, Jacq X, Trouplin V et al. (2004). "Functional proteomics mapping of a human signaling pathway". Genome Res. 14 (7): 1324–1332. doi:10.1101/gr.2334104. PMC 442148. PMID 15231748. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=442148.
- Gerhard DS, Wagner L, Feingold EA et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–2127. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=528928.
- Rush J, Moritz A, Lee KA et al. (2005). "Immunoaffinity profiling of tyrosine phosphorylation in cancer cells". Nat. Biotechnol. 23 (1): 94–101. doi:10.1038/nbt1046. PMID 15592455.
- Rual JF, Venkatesan K, Hao T et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature 437 (7062): 1173–1178. doi:10.1038/nature04209. PMID 16189514.