Probabilistic proofs of non-probabilistic theorems

Probability theory routinely uses results from other fields of mathematics (mostly, analysis). The opposite cases, collected below, are relatively rare; however, probability theory is used systematically in combinatorics via the probabilistic method. They are particularly used for non-constructive proofs.

Contents

Analysis

Combinatorics

Algebra

Topology and geometry

Number theory

Quantum theory

See also

Notes

  1. ^ Karel de Leeuw, Yitzhak Katznelson and Jean-Pierre Kahane, Sur les coefficients de Fourier des fonctions continues. (French) C. R. Acad. Sci. Paris Sér. A–B 285:16 (1977), A1001–A1003.
  2. ^ Raphaël Salem, On singular monotonic functions whose spectrum has a given Hausdorff dimension. Ark. Mat. 1, (1951). 353–365.
  3. ^ Robert Kaufman, On the theorem of Jarník and Besicovitch. Acta Arith. 39:3 (1981), 265–267
  4. ^ Blyth, Colin R.; Pathak, Pramod K. (1986), "A note on easy proofs of Stirling's theorem", American Mathematical Monthly 93 (5): 376–379, doi:10.2307/2323600, JSTOR 2323600 .
  5. ^ Gordon, Louis (1994), "A stochastic approach to the gamma function", American Mathematical Monthly 101 (9): 858–865, doi:10.2307/2975134, JSTOR 2975134 .
  6. ^ a b Revuz, Daniel; Yor, Marc (1994), Continuous martingales and Brownian motion (2nd ed.), Springer  (see Exercise (2.17) in Section V.2, page 187).
  7. ^ See Fatou's theorem.
  8. ^ Durrett, Richard (1984), Brownian motion and martingales in analysis, California: Wadsworth, ISBN 0-534-03065-3 .
  9. ^ Bass, R.F.; Burdzy, K. (1989), "A probabilistic proof of the boundary Harnack principle", Seminar on Stochastic Processes, Boston: Birkhäuser (published 1990), pp. 1–16, hdl:1773/2249 .
  10. ^ Bass, Richard F. (1995), Probabilistic techniques in analysis, Springer, p. 228 .
  11. ^ Bismut, Jean-Michel (1984), "The Atiyah–Singer Theorems: A Probabilistic Approach. I. The index theorem", J. Funct. Analysis 57: 56–99, doi:10.1016/0022-1236(84)90101-0, http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6WJJ-4D8DXG0-8J-1&_cdi=6880&_user=10&_orig=search&_coverDate=06%2F01%2F1984&_sk=999429998&view=c&wchp=dGLbVzb-zSkWW&md5=0d679ec499c8595e59bbc7b047a752b8&ie=/sdarticle.pdf .
  12. ^ As long as we have no article on Martin boundary, see Compactification (mathematics)#Other compactification theories.
  13. ^ a b Bishop, C. (1991), "A characterization of Poissonian domains", Arkiv för Matematik 29 (1): 1–24, doi:10.1007/BF02384328  (see Section 6).
  14. ^ Tsirelson, Boris (1997), "Triple points: from non-Brownian filtrations to harmonic measures", GAFA, Geometric and functional analysis (Birkhauser) 7 (6): 1096–1142, doi:10.1007/s000390050038, http://www.springerlink.com/content/56rd92tcftkf1c75/?p=43028bb7776b469abef8e7439f8ca086&pi=2 . author's site
  15. ^ Tsirelson, Boris (1998), "Within and beyond the reach of Brownian innovation", Proceedings of the international congress of mathematicians, Documenta mathematica, Extra Volume ICM 1998, III, Berlin: der Deutschen Mathematiker-Vereinigung, pp. 311–320, ISSN 1431-0635, http://www.mathematik.uni-bielefeld.de/documenta/xvol-icm/12/Tsirelson.MAN.html .
  16. ^ Charles Horowitz, Karin Usadi Katz and Mikhail G. Katz (2008), Loewner's torus inequality with isosystolic defect, Journal of Geometric Analysis 19 (2009), no. 4, 796-808. See arXiv:0803.0690.
  17. ^ Neel, Robert W. (2008), "A martingale approach to minimal surfaces", Journal of Functional Analysis (Elsevier) 256 (8): 2440–2472, doi:10.1016/j.jfa.2008.06.033 . Also arXiv:0805.0556.
  18. ^ Fulman, Jason (2001), "A probabilistic proof of the Rogers–Ramanujan identities", Bulletin of the London Mathematical Society 33 (4): 397–407, doi:10.1017/S0024609301008207, http://blms.oxfordjournals.org/cgi/content/abstract/33/4/397 . Also arXiv:math.CO/0001078.
  19. ^ Arveson, William (2003), Noncommutative dynamics and E-semigroups, New York: Springer, ISBN 0-387-00151-4 .
  20. ^ Tsirelson, Boris (2003), "Non-isomorphic product systems", in Price, Geoffrey, Advances in quantum dynamics, Contemporary mathematics, 335, American mathematical society, pp. 273–328, ISBN 0-8218-3215-8 . Also arXiv:math.FA/0210457.
  21. ^ Tsirelson, Boris (2008), "On automorphisms of type II Arveson systems (probabilistic approach)", New York Journal of Mathematics 14: 539–576, http://nyjm.albany.edu/j/2008/14-25.html .
  22. ^ Bhat, B.V.Rajarama; Srinivasan, Raman (2005), "On product systems arising from sum systems", Infinite Dimensional Analysis, Quantum Probability and Related Topics (IDAQP) 8 (1): 1–31, doi:10.1142/S0219025705001834, http://www.worldscinet.com/cgi-bin/details.cgi?id=pii:S0219025705001834&type=html . Also arXiv:math.OA/0405276.
  23. ^ Izumi, Masaki; Srinivasan, Raman (2008), "Generalized CCR flows", Communications in Mathematical Physics 281 (2): 529–571, doi:10.1007/s00220-008-0447-z, http://www.springerlink.com/content/8642264k2064213v/ . Also arXiv:0705.3280.
  24. ^ Perez-Garcia, D.; Wolf, M.M.; C., Palazuelos; Villanueva, I.; Junge, M. (2008), "Unbounded violation of tripartite Bell inequalities", Communications in mathematical physics (Springer) 279 (2): 455–486, doi:10.1007/s00220-008-0418-4, http://www.springerlink.com/content/728263187124v762/ 

External links