In recreational mathematics, a polyabolo (also known as a polytan) is a polyform with an isosceles right triangle as the base form.[1]
The name is a back formation from 'diabolo' although the shape formed by joining two triangles at just one vertex is not a proper polyabolo. On a false analogy as if di- in diabolo means twice, polyaboloes with from 1 to 10 triangles are called respectively monoboloes, diaboloes, triaboloes, tetraboloes, pentaboloes, hexaboloes, heptaboloes, octaboloes, enneaboloes, and decaboloes.
There are two ways in which a square in a polyabolo can consist of two isosceles right triangles, but polyaboloes are considered equivalent if they have the same boundaries. The number of nonequivalent polyaboloes composed of 1, 2, 3, … triangles is 1, 3, 4, 14, 30, 107, 318, 1116, 3743, … (sequence A006074 in OEIS).
Polyaboloes that are confined strictly to the plane and cannot be turned over may be termed one-sided. The number of one-sided polyaboloes composed of 1, 2, 3, … triangles is 1, 4, 6, 22, 56, 198, 624, 2182, 7448, … (sequence A151519 in OEIS).
As for a polyomino, a polyabolo that can be neither turned over nor rotated may be termed fixed. A polyabolo with no symmetries (rotation or reflection) corresponds to 8 distinct fixed polyaboloes.
A non-simply connected polyabolo is one that has one or more holes in it. The smallest value of n for which an n-abolo is non-simply connected is 7.
In 1968, David A. Klarner defined the order of a polyomino. Similarly, the order of a polyabolo P can be defined as the minimum number of congruent copies of P that can be assembled (allowing translation, rotation, and reflection) to form a rectangle.
A polyabolo has order 1 if and only if it is itself a rectangle. Polyaboloes of order 2 are also easily recognisable. Solomon W. Golomb found polyaboloes, including a triabolo, of order 8.[2] Michael Reid found a heptabolo of order 6.[3] Higher orders are possible.
|