Pikromycin

Pikromycin
Identifiers
CAS number 19721-56-3 Y
PubChem 5282037
ChemSpider 4445267 Y
Jmol-3D images Image 1
Properties
Molecular formula C28H47NO8
Molar mass 525.675
 Y (verify) (what is: Y/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Infobox references

Pikromycin was studied by Brokmann and Hekel in 1951 and is the first antibiotic macrolide to be isolated.[1] Pikromycin is synthesized through a type I polyketide synthase system in Streptomyces venezuelae, a species of Gram-positive bacterium in the Streptomyces genus. [2] Pikromycin is derived from narbonolide, a 14-membered ring macrolide. [3] Along with the narbonolide backbone, pikromycin includes a desosamine sugar and a hydroxyl group. Although Pikromycin is not a clinically useful antibiotic, it can be used as a raw material to synthesize antibiotic ketolide compounds such as ertythromycins and new epothilones. [4]

Biosynthesis

The pikromycin polyketide synthase of Streptomyces venezuelae contains four polypeptides: PikAI, PikAII, PikAIII, and PikAIV. These polypeptides contain a loading module, six extension molecules, and a thioesterase domain that that terminated the biosynthetic procedure. [5] In Figure 1, each circle corresponds to a PKS mutilifuctional protein, where ACP is acyl carrier protein, KS is keto-ACP synthase, KSQ is a keto-ACP synthase like domain, AT is acyltransferase, KR is keto ACP reductase, KR with cross is inactive KR, DH is hydroxyl-thioester dehydratase, ER is enoyl reductase, TEI is thioesterase domain I, TEII is type II thioesterase. [6] Des corresponds to the enzymes utilized in desosamine biosynthesis and transfer, which include DesI-DesVIII.

Figure 2 represents the desosamine deoxyamino sugar biosynthetic pathway. DesI-DesVI (des locus of pikromycin PKS) encodes all the enzymes needed to obtain TDP-desoamine from TDP-glucose. DesVII and DesVIII activities transfer desoamine to narbonolide and narbomycin is obtained. PikC cytochrome P450 hydrolase catalyzes the hydroxylation of narbomycin to obtain pikromycin. [7]

See also

References

  1. ^ Brockmann, H. and Henkel, W. (1951). "Pikromycin, ein bitter schmeckendes Antibioticum aus Actinomyceten". ntibiotica aus Actinomyceten, 84: 184–288. doi:10.1002/cber.19510840306. 
  2. ^ Y. Xue and D. Sherman (2001). "Biosynthesis and Combinatorial Biosynthesis of Pikromycin-Related Macrolides in Streptomyces venezuelae". Metabolic Engineering 3: 15–26. doi:10.1006/mben.2000.0167. 
  3. ^ Maezawa, T. Hori, A. Kinumaki and M. Suzuki (1973). "Biological conversion of narbonolide to picromycin". The Journal of Antibiotics 26: 771–775. PMID 4792390. 
  4. ^ J.D. Kittendorf and D.H. Sherman (2009). "The Methymycin/Pikromycin Biosynthetic Pathway: A Model for Metabolic Diversity in Natural Product". Bioorg Med Chem 17: 2137–2146. doi:10.1016/j.bmc.2008.10.082. 
  5. ^ S. Guptaa, V. Lakshmanan, B.S. Kima, R. Fecik, and K. A. Reynolds (2008). "Generation of Novel Pikromycin Antibiotic Products Through Mutasynthesis". Chembiochem 10: 1609–1616. doi:10.1002/cbic.200700635. 
  6. ^ D.L. Akey, J.D. Kittendorf, J.W. Giraldes, R.A. Fecik, D.H. Sherman, and J.L. Smith (2006). "Structural basis for macrolactonization by the pikromycin thioesterase.". Nature Chemical Biology 2: 537–542. 
  7. ^ Y. Xue and D. Sherman (2001). "Biosynthesis and Combinatorial Biosynthesis of Pikromycin-Related Macrolides in Streptomyces venezuelae". Metabolic Engineering 3: 15–26. doi:10.1006/mben.2000.0167.