This article is about the physical impacts of climate change. For some of these physical impacts, their effect on social and economic systems are also described.
Contents |
This article refers to reports produced by the IPCC. In their usage, "climate change" refers to a change in the state of the climate that can be identified by changes in the mean and/or variability of its properties, and that persists for extended periods, typically decades or longer (IPCC, 2007d:30).[1] The climate change referred to may be due to natural causes or the result of human activity.
Increasing temperature is likely to lead to increasing precipitation[2][3] but the effects on storms are less clear. Extratropical storms partly depend on the temperature gradient, which is predicted to weaken in the northern hemisphere as the polar region warms more than the rest of the hemisphere.[4]
Fire is a major agent for conversion of biomass and soil organic matter to CO2 (Denman et al., 2007:527).[5] There is a large potential for future alteration in the terrestrial carbon balance through altered fire regimes. With high confidence, Schneider et al. (2007:789) predicted that:[6]
IPCC (2007a:8) predicted that in the future, over most land areas, the frequency of warm spells or heat waves would very likely increase.[7] Other likely changes are listed below:
Storm strength leading to extreme weather is increasing, such as the power dissipation index of hurricane intensity.[8] Kerry Emanuel writes that hurricane power dissipation is highly correlated with temperature, reflecting global warming.[9] However, a further study by Emanuel using current model output concluded that the increase in power dissipation in recent decades cannot be completely attributed to global warming.[10] Hurricane modeling has produced similar results, finding that hurricanes, simulated under warmer, high-CO2 conditions, are more intense, however, hurricane frequency will be reduced.[11] Worldwide, the proportion of hurricanes reaching categories 4 or 5 – with wind speeds above 56 metres per second – has risen from 20% in the 1970s to 35% in the 1990s.[12] Precipitation hitting the US from hurricanes has increased by 7% over the 20th century.[13][14][15] The extent to which this is due to global warming as opposed to the Atlantic Multidecadal Oscillation is unclear. Some studies have found that the increase in sea surface temperature may be offset by an increase in wind shear, leading to little or no change in hurricane activity.[16] Hoyos et al. (2006) have linked the increasing trend in number of category 4 and 5 hurricanes for the period 1970–2004 directly to the trend in sea surface temperatures.[17]
Increases in catastrophes resulting from extreme weather are mainly caused by increasing population densities, and anticipated future increases are similarly dominated by societal change rather than climate change.[18] The World Meteorological Organization explains that “though there is evidence both for and against the existence of a detectable anthropogenic signal in the tropical cyclone climate record to date, no firm conclusion can be made on this point.”[19] They also clarified that “no individual tropical cyclone can be directly attributed to climate change.”[19]
Thomas Knutson and Robert E. Tuleya of NOAA stated in 2004 that warming induced by greenhouse gas may lead to increasing occurrence of highly destructive category-5 storms.[20] In 2008, Knutson et al. found that Atlantic hurricane and tropical storm frequencies could reduce under future greenhouse-gas-induced warming.[21] Vecchi and Soden find that wind shear, the increase of which acts to inhibit tropical cyclones, also changes in model-projections of global warming. There are projected increases of wind shear in the tropical Atlantic and East Pacific associated with the deceleration of the Walker circulation, as well as decreases of wind shear in the western and central Pacific.[22] The study does not make claims about the net effect on Atlantic and East Pacific hurricanes of the warming and moistening atmospheres, and the model-projected increases in Atlantic wind shear.[23]
A substantially higher risk of extreme weather does not necessarily mean a noticeably greater risk of slightly-above-average weather.[24] However, the evidence is clear that severe weather and moderate rainfall are also increasing. Increases in temperature are expected to produce more intense convection over land and a higher frequency of the most severe storms.[25]
Over the course of the 20th century, evaporation rates have reduced worldwide;[26] this is thought by many to be explained by global dimming. As the climate grows warmer and the causes of global dimming are reduced, evaporation will increase due to warmer oceans. Because the world is a closed system this will cause heavier rainfall, with more erosion. This erosion, in turn, can in vulnerable tropical areas (especially in Africa) lead to desertification. On the other hand, in other areas, increased rainfall lead to growth of forests in dry desert areas.
Scientists have found evidence that increased evaporation could result in more extreme weather as global warming progresses. The IPCC Third Annual Report says: "...global average water vapor concentration and precipitation are projected to increase during the 21st century. By the second half of the 21st century, it is likely that precipitation will have increased over northern mid- to high latitudes and Antarctica in winter. At low latitudes there are both regional increases and decreases over land areas. Larger year to year variations in precipitation are very likely over most areas where an increase in mean precipitation is projected."[2][27]
Research based on satellite observations, published in October, 2010, shows an increase in the flow of freshwater into the world's oceans, partly from melting ice and partly from increased precipitation driven by an increase in global ocean evaporation. The increase in global freshwater flow, based on data from 1994 to 2006, was about 18%. Much of the increase is in areas which already experience high rainfall. One effect, as perhaps experienced in the 2010 Pakistan floods, is to overwhelm flood control infrastructure.[28]
As the World Meteorological Organization explains, “recent increase in societal impact from tropical cyclones has largely been caused by rising concentrations of population and infrastructure in coastal regions.”[19] Pielke et al. (2008) normalized mainland U.S. hurricane damage from 1900–2005 to 2005 values and found no remaining trend of increasing absolute damage. The 1970s and 1980s were notable because of the extremely low amounts of damage compared to other decades. The decade 1996–2005 has the second most damage among the past 11 decades, with only the decade 1926–1935 surpassing its costs. The most damaging single storm is the 1926 Miami hurricane, with $157 billion of normalized damage.[18]
The American Insurance Journal predicted that “catastrophe losses should be expected to double roughly every 10 years because of increases in construction costs, increases in the number of structures and changes in their characteristics.”[29] The Association of British Insurers has stated that limiting carbon emissions would avoid 80% of the projected additional annual cost of tropical cyclones by the 2080s. The cost is also increasing partly because of building in exposed areas such as coasts and floodplains. The ABI claims that reduction of the vulnerability to some inevitable effects of climate change, for example through more resilient buildings and improved flood defences, could also result in considerable cost-savings in the longterm.[30]
In a literature assessment, Hegerl et al. (2007) assessed evidence for attributing observed climate change. They concluded that since the middle of the 20th century, it was likely that human influences had significantly contributed to surface temperature increases in every continent except Antarctica.[31] The magazine Scientific American reported [1] on December 23, 2008, that the 10 places most affected by climate change were Darfur, the Gulf Coast, Italy, northern Europe, the Great Barrier Reef, island nations, Washington, D.C., the Northwest Passage, the Alps, and Uganda.
In the northern hemisphere, the southern part of the Arctic region (home to 4,000,000 people) has experienced a temperature rise of 1 °C to 3 °C (1.8 °F to 5.4 °F) over the last 50 years. Canada, Alaska and Russia are experiencing initial melting of permafrost. This may disrupt ecosystems and by increasing bacterial activity in the soil lead to these areas becoming carbon sources instead of carbon sinks.[32] A study (published in Science) of changes to eastern Siberia's permafrost suggests that it is gradually disappearing in the southern regions, leading to the loss of nearly 11% of Siberia's nearly 11,000 lakes since 1971.[33] At the same time, western Siberia is at the initial stage where melting permafrost is creating new lakes, which will eventually start disappearing as in the east. Furthermore, permafrost melting will eventually cause methane release from melting permafrost peat bogs.
Anisimov et al. (2007) assessed the literature on impacts of climate change in Polar regions.[34] Model projections showed that Arctic terrestrial ecosystems and the active layer (the top layer of soil or rock in permafrost that is subjected to seasonal freezing and thawing) would be a small sink for carbon (i.e., net uptake of carbon) over this century (p. 662). These projections were viewed as being uncertain. It was judged that increased emissions of carbon from thawing of permafrost could occur. This would lead to an amplification of warming.
Increased CO2 levels cause warming in the troposphere but cooling in the stratosphere and mesosphere. In addition, a collapse of the thermosphere has been observed as a possible result in part due to increased carbon dioxide concentrations, the strongest cooling and contraction occurring in that layer during solar minimum. The most recent contraction in 2008-2009 was the largest such collapse since at least 1967.[35][36][37]
Recent evidence suggests that warming of the tropical oceans since a "tipping point" in 2000 may have acted as a negative feedback, reducing the observed warming during the 2000s. As warming and evaporation above the Pacific Ocean, temperatures in the lower stratosphere near the tropopause declined due to both greenhouse gases and ozone-depleting substances, reducing water vapor levels and removing its warming effect, with vapor concentrations below 2.2 ppmv as measured by the HALOE instrument on the Upper Atmosphere Research Satellite, in the lower stratosphere of the tropics between 5°N - 5°S first being observed since 2001, although a reversal in this pattern is also likely. The water vapor in the stratosphere arrives through tall thunderstorms, while 15% of this vapor is delivered by tropical cyclones, and through chemical breakdown of methane into water vapor and carbon dioxide, both of which are greenhouse gases. The vapor is frozen out of the stratosphere as more of the water is subjected to temperatures that freeze it out of the stratosphere. Water vapor concentrations in the lower stratosphere have declined by 10% (0.4 ppmv) since 2000, reducing warming during the decade by 25%. A rapid cooling of 4 °C to 6 °C also occurred in the lower stratosphere in the mid-1990s, while the rate of ocean warming increased. During the 1990s, increased stratospheric water vapor led to a 30% increase in warming. After 2000, the sea surface temperatures of the tropical Western Pacific, where a warm pool of water exists and where temperatures are heavily influenced by ENSO, between 10°N - 10°S and 139° - 171° longitude became anti-correlated with temperatures at the tropopause in the same latitudes between 171° - 200° longitude, both measured since the early 1980s; although the correlation had been previously positive, since 2000 the SST anomalies increased while tropopause temperatures decreased. A sharp increase in average SSTs within the Western Pacific warm pool by more than 0.25 °C in 2000, which has since stabilized, occurred as the "cold point" temperature of the study area at the tropopause experienced a significant reduction. This resulted in less water vapor from tropical thunderstorms entering the stratosphere. However, prior to 2000, increases in average Western Pacific SSTs had resulted in increases in tropopause cold point temperatures.[38][39][40][41][42][43] These findings potentially support the negative feedback "Iris hypothesis".[44][45]
Climate change can have an effect on the carbon cycle in an interactive "feedback" process . A feedback exists where an initial process triggers changes in a second process that in turn influences the initial process. A positive feedback intensifies the original process, and a negative feedback reduces it (IPCC, 2007d:78).[1] Models suggest that the interaction of the climate system and the carbon cycle is one where the feedback effect is positive (Schneider et al., 2007:792).[6]
Using the A2 SRES emissions scenario, Schneider et al. (2007:789) found that this effect led to additional warming by 2100, relative to the 1990-2000 period, of 0.1 to 1.5 °C. This estimate was made with high confidence. The climate projections made in the IPCC Forth Assessment Report of 1.1 to 6.4 °C account for this feedback effect. On the other hand, with medium confidence, Schneider et al. (2007) commented that additional releases of GHGs were possible from permafrost, peat lands, wetlands, and large stores of marine hydrates at high latitudes.
Gas hydrates are ice-like deposits containing a mixture of water and gas, the most common gas of which is methane (Maslin, 2004:1).[46] Gas hydrates are stable under high pressures and at relatively low temperatures and are found underneath the oceans and permafrost regions. Future warming at intermediate depths in the world's oceans, as predicted by climate models, will tend to destabilize gas hydrates resulting in the release of large quantities of methane. On the other hand, projected rapid sea level rise in the coming centuries associated with global warming will tend to stabilize marine gas hydrate deposits.
Models have been used to assess the effect that climate change will have on the carbon cycle (Meehl et al., 2007:789-790).[47] In the Coupled Climate-Carbon Cycle Model Intercomparison Project, eleven climate models were used. Observed emissions were used in the models and future emission projections were based on the IPCC SRES A2 emissions scenario.
Unanimous agreement was found among the models that future climate change will reduce the efficiency of the land and ocean carbon cycle to absorb human-induced CO2. As a result, a larger fraction of human-induced CO2 will stay airborne if climate change controls the carbon cycle. By the end of the 21st century, this additional CO2 in the atmosphere varied between 20 and 220 ppm for the two extreme models, with most models lying between 50 and 100 ppm. This additional CO2 led to a projected increase in warming of between 0.1 and 1.5 °C.
IPCC (2007a:5) found that, on average, mountain glaciers and snow cover had decreased in both the northern and southern hemispheres.[7] This widespread decrease in glaciers and ice caps has contributed to observed sea level rise. With very high or high confidence, IPCC (2007d:11) made a number of predictions relating to future changes in glaciers:[1]
In historic times, glaciers grew during a cool period from about 1550 to 1850 known as the Little Ice Age. Subsequently, until about 1940, glaciers around the world retreated as the climate warmed. Glacier retreat declined and reversed in many cases from 1950 to 1980 as a slight global cooling occurred. Since 1980, glacier retreat has become increasingly rapid and ubiquitous, and has threatened the existence of many of the glaciers of the world. This process has increased markedly since 1995.[48]
Excluding the ice caps and ice sheets of the Arctic and Antarctic, the total surface area of glaciers worldwide has decreased by 50% since the end of the 19th century.[49] Currently glacier retreat rates and mass balance losses have been increasing in the Andes, Alps, Pyrenees, Himalayas, Rocky Mountains and North Cascades.
The loss of glaciers not only directly causes landslides, flash floods and glacial lake overflow,[50] but also increases annual variation in water flows in rivers. Glacier runoff declines in the summer as glaciers decrease in size, this decline is already observable in several regions.[51] Glaciers retain water on mountains in high precipitation years, since the snow cover accumulating on glaciers protects the ice from melting. In warmer and drier years, glaciers offset the lower precipitation amounts with a higher meltwater input.[49]
Of particular importance are the Hindu Kush and Himalayan glacial melts that comprise the principal dry-season water source of many of the major rivers of the Central, South, East and Southeast Asian mainland. Increased melting would cause greater flow for several decades, after which "some areas of the most populated regions on Earth are likely to 'run out of water'" as source glaciers are depleted.[52] The Tibetan Plateau contains the world's third-largest store of ice. Temperatures there are rising four times faster than in the rest of China, and glacial retreat is at a high speed compared to elsewhere in the world.[53]
According to a Reuters report, the Himalayan glaciers that are the sources of Asia's biggest rivers—Ganges, Indus, Brahmaputra, Yangtze, Mekong, Salween and Yellow—could diminish as temperatures rise.[54] Approximately 2.4 billion people live in the drainage basin of the Himalayan rivers.[55] India, China, Pakistan, Bangladesh, Nepal and Myanmar could experience floods followed by droughts in coming decades. In India alone, the Ganges provides water for drinking and farming for more than 500 million people.[56][57][58] It has to be acknowledged, however, that increased seasonal runoff of Himalayan glaciers led to increased agricultural production in northern India throughout the 20th century.[59]
The recession of mountain glaciers, notably in Western North America, Franz-Josef Land, Asia, the Alps, the Pyrenees, Indonesia and Africa, and tropical and sub-tropical regions of South America, has been used to provide qualitative support to the rise in global temperatures since the late 19th century. Many glaciers are being lost to melting further raising concerns about future local water resources in these glaciated areas. In Western North America the 47 North Cascade glaciers observed all are retreating.[60]
Despite their proximity and importance to human populations, the mountain and valley glaciers of temperate latitudes amount to a small fraction of glacial ice on the earth. About 99% is in the great ice sheets of polar and subpolar Antarctica and Greenland. These continuous continental-scale ice sheets, 3 kilometres (1.9 mi) or more in thickness, cap the polar and subpolar land masses. Like rivers flowing from an enormous lake, numerous outlet glaciers transport ice from the margins of the ice sheet to the ocean.
Glacier retreat has been observed in these outlet glaciers, resulting in an increase of the ice flow rate. In Greenland the period since the year 2000 has brought retreat to several very large glaciers that had long been stable. Three glaciers that have been researched, Helheim, Jakobshavn Isbræ and Kangerdlugssuaq Glaciers, jointly drain more than 16% of the Greenland Ice Sheet. Satellite images and aerial photographs from the 1950s and 1970s show that the front of the glacier had remained in the same place for decades. But in 2001 it began retreating rapidly, retreating 7.2 km (4.5 mi) between 2001 and 2005. It has also accelerated from 20 m (66 ft)/day to 32 m (105 ft)/day.[61] Jakobshavn Isbræ in western Greenland had been moving at speeds of over 24 m (79 ft)/day with a stable terminus since at least 1950. The glacier's ice tongue began to break apart in 2000, leading to almost complete disintegration in 2003, while the retreat rate increased to over 30 m (98 ft)/day.[62]
The role of the oceans in global warming is a complex one. The oceans serve as a sink for carbon dioxide, taking up much that would otherwise remain in the atmosphere, but increased levels of CO2 have led to ocean acidification. Furthermore, as the temperature of the oceans increases, they become less able to absorb excess CO2. Global warming is projected to have a number of effects on the oceans. Ongoing effects include rising sea levels due to thermal expansion and melting of glaciers and ice sheets, and warming of the ocean surface, leading to increased temperature stratification. Other possible effects include large-scale changes in ocean circulation.
As the climate warms, snow cover and sea ice extent decrease. In a literature assessment, Meehl et al. (2007:750) found that model projections for the 21st century showed a reduction of sea ice in both the Arctic and Antarctic.[47] The range of model responses was large. Projected reductions were accelerated in the Arctic. Using the high-emission A2 SRES scenario, some models projected that summer sea ice cover in the Arctic would disappear entirely by the latter part of the 21st century.
IPCC (2007a:5) reported that since 1961, global average sea level had risen at an average rate of 1.8 [1.3 to 2.3] mm/yr.[7] Between 1993 and 2003, the rate increased above the previous period to 3.1 [2.4 to 3.8] mm/yr. IPCC (2007a) were uncertain whether the increase in rate from 1993 to 2003 was due to natural variations in sea level over the time period, or whether it reflected an increase in the underlying long-term trend.
IPCC (2007a:13, 14) projected sea level rise to the end of the 21st century using the SRES emission scenarios. Across the six SRES marker scenarios, sea level was projected to rise by 18 to 59 cm (7.1 to 23.2 inches). This projection was for the time period 2090-2099, with the increase in level relative to average sea levels over the 1980-1999 period. Due to a lack of scientific understanding, this sea level rise estimate does not include all of the possible contributions of ice sheets.
With increasing average global temperature, the water in the oceans expands in volume, and additional water enters them which had previously been locked up on land in glaciers and ice sheets. The Greenland and the Antarctic ice sheets are major ice masses, and at least the former of which may suffer irreversible decline.[63] For most glaciers worldwide, an average volume loss of 60% until 2050 is predicted.[64] Meanwhile, the estimated total ice melting rate over Greenland is 239 ± 23 cubic kilometres (57 ± 5.5 cu mi) per year, mostly from East Greenland.[65] The Antarctic ice sheet, however, is expected to grow during the 21st century because of increased precipitation.[66] Under the IPCC Special Report on Emission Scenario (SRES) A1B, by the mid-2090s global sea level will reach 0.22 to 0.44 m (8.7 to 17 in) above 1990 levels, and is currently rising at about 4 mm (0.16 in) per year.[66] Since 1900, the sea level has risen at an average of 1.7 mm (0.067 in) per year;[66] since 1993, satellite altimetry from TOPEX/Poseidon indicates a rate of about 3 mm (0.12 in) per year.[66]
The sea level has risen more than 120 metres (390 ft) since the Last Glacial Maximum about 20,000 years ago. The bulk of that occurred before 7000 years ago.[67] Global temperature declined after the Holocene Climatic Optimum, causing a sea level lowering of 0.7 ± 0.1 m (28 ± 3.9 in) between 4000 and 2500 years before present.[68] From 3000 years ago to the start of the 19th century, sea level was almost constant, with only minor fluctuations. However, the Medieval Warm Period may have caused some sea level rise; evidence has been found in the Pacific Ocean for a rise to perhaps 0.9 m (2 ft 11 in) above present level in 700 BP.[69]
In a paper published in 2007, the climatologist James E. Hansen et al. claimed that ice at the poles does not melt in a gradual and linear fashion, but that another according to the geological record, the ice sheets can suddenly destabilize when a certain threshold is exceeded. In this paper Hansen et al. state:
Our concern that BAU GHG scenarios would cause large sealevel rise this century (Hansen 2005) differs from estimates of IPCC (2001, 2007), which foresees little or no contribution to twentyfirst century sealevel rise from Greenland and Antarctica. However, the IPCC analyses and projections do not well account for the nonlinear physics of wet ice sheet disintegration, ice streams and eroding ice shelves, nor are they consistent with the palaeoclimate evidence we have presented for the absence of discernible lag between ice sheet forcing and sealevel rise.[70]
Sea level rise due to the collapse of an ice sheet would be distributed nonuniformly across the globe. The loss of mass in the region around the ice sheet would decrease the gravitational potential there, reducing the amount of local sea level rise or even causing local sea level fall. The loss of the localized mass would also change the moment of inertia of the Earth, as flow in the Earth's mantle will require 10–15 thousand years to make up the mass deficit. This change in the moment of inertia results in true polar wander, in which the Earth's rotational axis remains fixed with respect to the sun, but the rigid sphere of the Earth rotates with respect to it. This changes the location of the equatorial bulge of the Earth and further affects the geoid, or global potential field. A 2009 study of the effects of collapse of the West Antarctic Ice Sheet shows the result of both of these effects. Instead of a global 5-meter sea level rise, western Antarctica would experience approximately 25 centimeters of sea level fall, while the United States, parts of Canada, and the Indian Ocean, would experience up to 6.5 meters of sea level rise.[71]
A paper published in 2008 by a group of researchers at the University of Wisconsin led by Anders Carlson used the deglaciation of North America at 9000 years before present as an analogue to predict sea level rise of 1.3 meters in the next century,[72][73] which is also much higher than the IPCC predictions. However, models of glacial flow in the smaller present-day ice sheets show that a probable maximum value for sea level rise in the next century is 80 centimeters, based on limitations on how quickly ice can flow below the equilibrium line altitude and to the sea.[74]
From 1961 to 2003, the global ocean temperature has risen by 0.10 °C from the surface to a depth of 700 m. There is variability both year-to-year and over longer time scales, with global ocean heat content observations showing high rates of warming for 1991 to 2003, but some cooling from 2003 to 2007.[66] The temperature of the Antarctic Southern Ocean rose by 0.17 °C (0.31 °F) between the 1950s and the 1980s, nearly twice the rate for the world's oceans as a whole.[75] As well as having effects on ecosystems (e.g. by melting sea ice, affecting algae that grow on its underside), warming reduces the ocean's ability to absorb CO2.
Ocean acidification is an effect of rising concentrations of CO2 in the atmosphere, and is not a direct consequence of global warming. The oceans soak up much of the CO2 produced by living organisms, either as dissolved gas, or in the skeletons of tiny marine creatures that fall to the bottom to become chalk or limestone. Oceans currently absorb about one tonne of CO2 per person per year. It is estimated that the oceans have absorbed around half of all CO2 generated by human activities since 1800 (118 ± 19 petagrams of carbon from 1800 to 1994).[76]
In water, CO2 becomes a weak carbonic acid, and the increase in the greenhouse gas since the Industrial Revolution has already lowered the average pH (the laboratory measure of acidity) of seawater by 0.1 units, to 8.2. Predicted emissions could lower the pH by a further 0.5 by 2100, to a level probably not seen for hundreds of millennia and, critically, at a rate of change probably 100 times greater than at any time over this period.[77][78]
There are concerns that increasing acidification could have a particularly detrimental effect on corals[79] (16% of the world's coral reefs have died from bleaching caused by warm water in 1998,[80] which coincidentally was the warmest year ever recorded) and other marine organisms with calcium carbonate shells.[81]
In November 2009 an article in Science by scientists at Canada's Department of Fisheries and Oceans reported they had found very low levels of the building blocks for the calcium chloride that forms plankton shells in the Beaufort Sea.[82] Fiona McLaughlin, one of the DFO authors, asserted that the increasing acidification of the Arctic Ocean was close to the point it would start dissolving the walls of existing plankton: "[the] Arctic ecosystem may be risk. In actual fact, they'll dissolve the shells." Because cold water absorbs CO2 more readily than warmer water the acidification is more severe in the polar regions. McLaughlin predicted the acidified water would travel to the North Atlantic within the next ten years.
There is some speculation that global warming could, via a shutdown or slowdown of the thermohaline circulation, trigger localized cooling in the North Atlantic and lead to cooling, or lesser warming, in that region.[83] This would affect in particular areas like Scandinavia and Britain that are warmed by the North Atlantic drift.
The chances of this near-term collapse of the circulation are unclear; there is some evidence for the short-term stability of the Gulf Stream and possible weakening of the North Atlantic drift. However, the degree of weakening, and whether it will be sufficient to shut down the circulation, is under debate. As yet, no cooling has been found in northern Europe or nearby seas. Lenton et al. found that "simulations clearly pass a THC tipping point this century".[83]
IPCC (2007b:17) concluded that a slowing of the Meridional Overturning Circulation would very likely occur this century.[84] Due to global warming, temperatures across the Atlantic and Europe were still projected to increase.
The amount of oxygen dissolved in the oceans may decline, with adverse consequences for ocean life.[85][86]
Sulfur aerosols, especially stratospheric sulfur aerosols have a significant effect on climate. One source of such aerosols is the sulfur cycle, where plankton release gases such as DMS which eventually becomes oxidised to sulfur dioxide in the atmosphere. Disruption to the oceans as a result of ocean acidification or disruptions to the thermohaline circulation may result in disruption of the sulfur cycle, thus reducing its cooling effect on the planet through the creation of stratospheric sulfur aerosols.
The retreat of glaciers and ice caps can cause increased volcanism. Reduction in ice cover reduces the confining pressure exerted on the volcano, increasing deviatoric stresses and potentially causing the volcano to erupt. This reduction of pressure can also cause decompression melting of material in the mantle, resulting in the generation of more magma.[87] Researchers in Iceland have shown that the rate of volcanic rock production there following deglaciation (10,000 to 4500 years before present) was 20–30 times greater than that observed after 2900 years before present.[88] While the original study addresses the first reason for increased volcanism (reduced confining pressure), scientists have more recently shown that these lavas have unusually high trace element concentrations, indicative of increased melting in the mantle.[89] This work in Iceland has been corroborated by a study in California, in which scientists found a strong correlation between volcanism and periods of global deglaciation.[90] The effects of current sea level rise could include increased crustal stress at the base of coastal volcanoes from a rise in the volcano's water table (and the associated saltwater intrusion), while the mass from extra water could activate dormant seismic faults around volcanoes. In addition, the wide-scale displacement of water from melting in places such as West Antarctica is likely to slightly alter the Earth's rotational period and may shift its axial tilt on the scale of hundreds of metres, inducing further crustal stress changes.[91][92]
Current melting of ice is predicted to increase the size and frequency of volcanic eruptions.[93] In particular, lateral collapse events at stratovolcanoes are likely to increase,[93][94] and there are potential positive feedbacks between the removal of ice and magmatism.[93]
A numerical modeling study has demonstrated that seismicity increases during unloading, such as that due to the removal of ice.[95]