In six-dimensional geometry, a uniform polypeton[1][2] (or uniform 6-polytope) is a six-dimensional uniform polytope. A uniform polypeton is vertex-transitive, and all facets are uniform polytera.
The complete set of convex uniform polypeta has not been determined, but most can be made as Wythoff constructions from a small set of symmetry groups. These construction operations are represented by the permutations of rings of the Coxeter-Dynkin diagrams. Each combination of at least one ring on every connected group of nodes in the diagram produces a uniform 6-polytope.
The simplest uniform polypeta are regular polytopes: the 6-simplex {3,3,3,3,3}, the 6-cube (hexeract) {4,3,3,3,3}, and the 6-orthoplex (hexacross) {3,3,3,3,4}.
Contents |
Uniform 6-polytopes with reflective symmetry can be generated by these four Coxeter groups, represented by permutations of rings of the Coxeter-Dynkin diagrams.
There are four fundamental reflective symmety groups which generate 153 unique uniform 6-polytopes.
# | Coxeter group | Coxeter-Dynkin diagram | |
---|---|---|---|
1 | A6 | [35] | |
2 | B6 | [4,34] | |
3a | D6 | [33,1,1] | |
4 | E6 | [32,2,1] |
Uniform prism
There are 6 categorical uniform prisms based the uniform 5-polytopes.
# | Coxeter group | Coxeter-Dynkin diagram | Notes | |
---|---|---|---|---|
1 | A5×A1 | [3,3,3,3] × [ ] | Prism family based on 6-simplex | |
2 | B5×A1 | [4,3,3,3] × [ ] | Prism family based on 6-cube | |
3a | D5×A1 | [32,1,1] × [ ] | Prism family based on 6-demicube |
# | Coxeter group | Coxeter-Dynkin diagram | Notes | |
---|---|---|---|---|
4 | A3×I2(p)×A1 | [3,3] × [p] × [ ] | Prism family based on tetrahedral-p-gonal duoprisms | |
5 | B3×I2(p)×A1 | [4,3] × [p] × [ ] | Prism family based on cubic-p-gonal duoprisms | |
6 | H3×I2(p)×A1 | [5,3] × [p] × [ ] | Prism family based on dodecahedral-p-gonal duoprisms |
Uniform duoprism
There are 11 categorical uniform duoprismatic families of polytopes based on Cartesian products of lower dimensional uniform polytopes. Five are formed as the product of a uniform polychoron with a regular polygon, and six are formed by the product of two uniform polyhedra:
# | Coxeter group | Coxeter-Dynkin diagram | Notes | |
---|---|---|---|---|
1 | A4×I2(p) | [3,3,3] × [p] | Family based on 5-cell-p-gonal duoprisms. | |
2 | B4×I2(p) | [4,3,3] × [p] | Family based on tesseract-p-gonal duoprisms. | |
3 | F4×I2(p) | [3,4,3] × [p] | Family based on 24-cell-p-gonal duoprisms. | |
4 | H4×I2(p) | [5,3,3] × [p] | Family based on 120-cell-p-gonal duoprisms. | |
5 | D4×I2(p) | [31,1,1] × [p] | Family based on demitesseract-p-gonal duoprisms. |
# | Coxeter group | Coxeter-Dynkin diagram | Notes | |
---|---|---|---|---|
6 | A32 | [3,3]2 | Family based on tetrahedral duoprisms. | |
7 | A3×B3 | [3,3] × [4,3] | Family based on tetrahedral-cubic duoprisms. | |
8 | A3×H3 | [3,3] × [5,3] | Family based on tetrahedral-dodecahedral duoprisms. | |
9 | B32 | [4,3]2 | Family based on cubic duoprisms. | |
10 | B3×H3 | [4,3] × [5,3] | Family based on cubic-dodecahedral duoprisms. | |
11 | H32 | [5,3]2 | Family based on dodecahedral duoprisms. |
Uniform triaprism
There is one infinite family of uniform triaprismatic families of polytopes constructed as a Cartesian products of three regular polygons. Each combination of at least one ring on every connected group produces a uniform prismatic 6-polytope.
# | Coxeter group | Coxeter-Dynkin diagram | Notes | |
---|---|---|---|---|
1 | I2(p)×I2(q)×I2(r) | [p] × [q] × [r] | Family based on p,q,r-gonal triprisms |
These fundamental families generate 153 nonprismatic convex uniform polypeta.
In addition, there are 105 uniform 6-polytope constructions based on prisms of the uniform polyterons: [3,3,3,3]x[ ], [4,3,3,3]x[ ], [5,3,3,3]x[ ], [32,1,1]x[ ].
In addition, there are infinitely many uniform 6-polytope based on:
There are 32+4−1=35 forms, derived by marking one or more nodes of the Coxeter-Dynkin diagram. All 35 are enumerated below. They are named by Norman Johnson from the Wythoff construction operations upon regular 6-simplex (heptapeton). Bowers-style acronym names are given in parentheses for cross-referencing.
The A6 family has symmetry of order 5040 (7 factorial).
The coordinates of uniform 6-polytopes with 6-simplex symmetry can be generated as permutations of simple integers in 7-space, all in hyperplanes with normal vector (1,1,1,1,1,1,1).
See also list of A6 polytopes for graphs of these polytopes.
# | Coxeter-Dynkin | Johnson naming system Bowers name and (acronym) |
Base point | Element counts | |||||
---|---|---|---|---|---|---|---|---|---|
5 | 4 | 3 | 2 | 1 | 0 | ||||
1 | 6-simplex heptapeton (hop) |
(0,0,0,0,0,0,1) | 7 | 21 | 35 | 35 | 21 | 7 | |
2 | Rectified 6-simplex rectified heptapeton (ril) |
(0,0,0,0,0,1,1) | 14 | 63 | 140 | 175 | 105 | 21 | |
3 | Truncated 6-simplex truncated heptapeton (til) |
(0,0,0,0,0,1,2) | 14 | 63 | 140 | 175 | 126 | 42 | |
4 | Birectified 6-simplex birectified heptapeton (bril) |
(0,0,0,0,1,1,1) | 14 | 84 | 245 | 350 | 210 | 35 | |
5 | Cantellated 6-simplex small rhombated heptapeton (sril) |
(0,0,0,0,1,1,2) | 35 | 210 | 560 | 805 | 525 | 105 | |
6 | Bitruncated 6-simplex bitruncated heptapeton (batal) |
(0,0,0,0,1,2,2) | 14 | 84 | 245 | 385 | 315 | 105 | |
7 | Cantitruncated 6-simplex great rhombated heptapeton (gril) |
(0,0,0,0,1,2,3) | 35 | 210 | 560 | 805 | 630 | 210 | |
8 | Runcinated 6-simplex small prismated heptapeton (spil) |
(0,0,0,1,1,1,2) | 70 | 455 | 1330 | 1610 | 840 | 140 | |
9 | Bicantellated 6-simplex small prismated heptapeton (sabril) |
(0,0,0,1,1,2,2) | 70 | 455 | 1295 | 1610 | 840 | 140 | |
10 | Runcitruncated 6-simplex prismatotruncated heptapeton (patal) |
(0,0,0,1,1,2,3) | 70 | 560 | 1820 | 2800 | 1890 | 420 | |
11 | Tritruncated 6-simplex tetradecapeton (fe) |
(0,0,0,1,2,2,2) | 14 | 84 | 280 | 490 | 420 | 140 | |
12 | Runcicantellated 6-simplex prismatorhombated heptapeton (pril) |
(0,0,0,1,2,2,3) | 70 | 455 | 1295 | 1960 | 1470 | 420 | |
13 | Bicantitruncated 6-simplex great birhombated heptapeton (gabril) |
(0,0,0,1,2,3,3) | 49 | 329 | 980 | 1540 | 1260 | 420 | |
14 | Runcicantitruncated 6-simplex great prismated heptapeton (gapil) |
(0,0,0,1,2,3,4) | 70 | 560 | 1820 | 3010 | 2520 | 840 | |
15 | Stericated 6-simplex small cellated heptapeton (scal) |
(0,0,1,1,1,1,2) | 105 | 700 | 1470 | 1400 | 630 | 105 | |
16 | Biruncinated 6-simplex small biprismato-tetradecapeton (sibpof) |
(0,0,1,1,1,2,2) | 84 | 714 | 2100 | 2520 | 1260 | 210 | |
17 | Steritruncated 6-simplex cellitruncated heptapeton (catal) |
(0,0,1,1,1,2,3) | 105 | 945 | 2940 | 3780 | 2100 | 420 | |
18 | Stericantellated 6-simplex cellirhombated heptapeton (cral) |
(0,0,1,1,2,2,3) | 105 | 1050 | 3465 | 5040 | 3150 | 630 | |
19 | Biruncitruncated 6-simplex biprismatorhombated heptapeton (bapril) |
(0,0,1,1,2,3,3) | 84 | 714 | 2310 | 3570 | 2520 | 630 | |
20 | Stericantitruncated 6-simplex celligreatorhombated heptapeton (cagral) |
(0,0,1,1,2,3,4) | 105 | 1155 | 4410 | 7140 | 5040 | 1260 | |
21 | Steriruncinated 6-simplex celliprismated heptapeton (copal) |
(0,0,1,2,2,2,3) | 105 | 700 | 1995 | 2660 | 1680 | 420 | |
22 | Steriruncitruncated 6-simplex celliprismatotruncated heptapeton (captal) |
(0,0,1,2,2,3,4) | 105 | 945 | 3360 | 5670 | 4410 | 1260 | |
23 | Steriruncicantellated 6-simplex celliprismatorhombated heptapeton (copril) |
(0,0,1,2,3,3,4) | 105 | 1050 | 3675 | 5880 | 4410 | 1260 | |
24 | Biruncicantitruncated 6-simplex great biprismato-tetradecapeton (gibpof) |
(0,0,1,2,3,4,4) | 84 | 714 | 2520 | 4410 | 3780 | 1260 | |
25 | Steriruncicantitruncated 6-simplex great cellated heptapeton (gacal) |
(0,0,1,2,3,4,5) | 105 | 1155 | 4620 | 8610 | 7560 | 2520 | |
26 | Pentellated 6-simplex small teri-tetradecapeton (staf) |
(0,1,1,1,1,1,2) | 126 | 434 | 630 | 490 | 210 | 42 | |
27 | Pentitruncated 6-simplex teracellated heptapeton (tocal) |
(0,1,1,1,1,2,3) | 126 | 826 | 1785 | 1820 | 945 | 210 | |
28 | Penticantellated 6-simplex teriprismated heptapeton (topal) |
(0,1,1,1,2,2,3) | 126 | 1246 | 3570 | 4340 | 2310 | 420 | |
29 | Penticantitruncated 6-simplex terigreatorhombated heptapeton (togral) |
(0,1,1,1,2,3,4) | 126 | 1351 | 4095 | 5390 | 3360 | 840 | |
30 | Pentiruncitruncated 6-simplex tericellirhombated heptapeton (tocral) |
(0,1,1,2,2,3,4) | 126 | 1491 | 5565 | 8610 | 5670 | 1260 | |
31 | Pentiruncicantellated 6-simplex teriprismatorhombi-tetradecapeton (taporf) |
(0,1,1,2,3,3,4) | 126 | 1596 | 5250 | 7560 | 5040 | 1260 | |
32 | Pentiruncicantitruncated 6-simplex terigreatoprismated heptapeton (tagopal) |
(0,1,1,2,3,4,5) | 126 | 1701 | 6825 | 11550 | 8820 | 2520 | |
33 | Pentisteritruncated 6-simplex tericellitrunki-tetradecapeton (tactaf) |
(0,1,2,2,2,3,4) | 126 | 1176 | 3780 | 5250 | 3360 | 840 | |
34 | Pentistericantitruncated 6-simplex tericelligreatorhombated heptapeton (tacogral) |
(0,1,2,2,3,4,5) | 126 | 1596 | 6510 | 11340 | 8820 | 2520 | |
35 | Omnitruncated 6-simplex great teri-tetradecapeton (gotaf) |
(0,1,2,3,4,5,6) | 126 | 1806 | 8400 | 16800 | 15120 | 5040 |
There are 63 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings.
The B6 family has symmetry of order 46080 (6 factorial x 26).
They are named by Norman Johnson from the Wythoff construction operations upon the regular 6-cube and 6-orthoplex. Bowers names and acronym names are given for cross-referencing.
See also list of B6 polytopes for graphs of these polytopes.
# | Coxeter-Dynkin diagram | Schläfli symbol | Names | Element counts | |||||
---|---|---|---|---|---|---|---|---|---|
5 | 4 | 3 | 2 | 1 | 0 | ||||
36 | t0{3,3,3,3,4} | 6-orthoplex Hexacontatetrapeton (gee) |
64 | 192 | 240 | 160 | 60 | 12 | |
37 | t1{3,3,3,3,4} | Rectified 6-orthoplex Rectified hexacontatetrapeton (rag) |
76 | 576 | 1200 | 1120 | 480 | 60 | |
38 | t2{3,3,3,3,4} | Birectified 6-orthoplex Birectified hexacontatetrapeton (brag) |
76 | 636 | 2160 | 2880 | 1440 | 160 | |
39 | t2{4,3,3,3,3} | Birectified 6-cube Birectified hexeract (brox) |
76 | 636 | 2080 | 3200 | 1920 | 240 | |
40 | t1{4,3,3,3,3} | Rectified 6-cube Rectified hexeract (rax) |
76 | 576 | 1200 | 1120 | 480 | 60 | |
41 | t0{4,3,3,3,3} | 6-cube Hexeract (ax) |
12 | 60 | 160 | 240 | 192 | 64 | |
42 | t0,1{3,3,3,3,4} | Truncated 6-orthoplex Truncated hexacontatetrapeton (tag) |
76 | 576 | 1200 | 1120 | 540 | 120 | |
43 | t0,2{3,3,3,3,4} | Cantellated 6-orthoplex Small rhombated hexacontatetrapeton (srog) |
136 | 1656 | 5040 | 6400 | 3360 | 480 | |
44 | t1,2{3,3,3,3,4} | Bitruncated 6-orthoplex Bitruncated hexacontatetrapeton (botag) |
1920 | 480 | |||||
45 | t0,3{3,3,3,3,4} | Runcinated 6-orthoplex Small prismated hexacontatetrapeton (spog) |
7200 | 960 | |||||
46 | t1,3{3,3,3,3,4} | Bicantellated 6-orthoplex Small birhombated hexacontatetrapeton (siborg) |
8640 | 1440 | |||||
47 | t2,3{4,3,3,3,3} | Tritruncated 6-cube Hexeractihexacontitetrapeton (xog) |
3360 | 960 | |||||
48 | t0,4{3,3,3,3,4} | Stericated 6-orthoplex Small cellated hexacontatetrapeton (scag) |
5760 | 960 | |||||
49 | t1,4{4,3,3,3,3} | Biruncinated 6-cube Small biprismato-hexeractihexacontitetrapeton (sobpoxog) |
11520 | 1920 | |||||
50 | t1,3{4,3,3,3,3} | Bicantellated 6-cube Small birhombated hexeract (saborx) |
9600 | 1920 | |||||
51 | t1,2{4,3,3,3,3} | Bitruncated 6-cube Bitruncated hexeract (botox) |
2880 | 960 | |||||
52 | t0,5{4,3,3,3,3} | Pentellated 6-cube Small teri-hexeractihexacontitetrapeton (stoxog) |
1920 | 384 | |||||
53 | t0,4{4,3,3,3,3} | Stericated 6-cube Small cellated hexeract (scox) |
5760 | 960 | |||||
54 | t0,3{4,3,3,3,3} | Runcinated 6-cube Small prismated hexeract (spox) |
7680 | 1280 | |||||
55 | t0,2{4,3,3,3,3} | Cantellated 6-cube Small rhombated hexeract (srox) |
4800 | 960 | |||||
56 | t0,1{4,3,3,3,3} | Truncated 6-cube Truncated hexeract (tox) |
76 | 444 | 1120 | 1520 | 1152 | 384 | |
57 | t0,1,2{3,3,3,3,4} | Cantitruncated 6-orthoplex Great rhombated hexacontatetrapeton (grog) |
3840 | 960 | |||||
58 | t0,1,3{3,3,3,3,4} | Runcitruncated 6-orthoplex Prismatotruncated hexacontatetrapeton (potag) |
15840 | 2880 | |||||
59 | t0,2,3{3,3,3,3,4} | Runcicantellated 6-orthoplex Prismatorhombated hexacontatetrapeton (prog) |
11520 | 2880 | |||||
60 | t1,2,3{3,3,3,3,4} | Bicantitruncated 6-orthoplex Great birhombated hexacontatetrapeton (gaborg) |
10080 | 2880 | |||||
61 | t0,1,4{3,3,3,3,4} | Steritruncated 6-orthoplex Cellitruncated hexacontatetrapeton (catog) |
19200 | 3840 | |||||
62 | t0,2,4{3,3,3,3,4} | Stericantellated 6-orthoplex Cellirhombated hexacontatetrapeton (crag) |
28800 | 5760 | |||||
63 | t1,2,4{3,3,3,3,4} | Biruncitruncated 6-orthoplex Biprismatotruncated hexacontatetrapeton (boprax) |
23040 | 5760 | |||||
64 | t0,3,4{3,3,3,3,4} | Steriruncinated 6-orthoplex Celliprismated hexacontatetrapeton (copog) |
15360 | 3840 | |||||
65 | t1,2,4{4,3,3,3,3} | Biruncitruncated 6-cube Biprismatotruncated hexeract (boprag) |
23040 | 5760 | |||||
66 | t1,2,3{4,3,3,3,3} | Bicantitruncated 6-cube Great birhombated hexeract (gaborx) |
11520 | 3840 | |||||
67 | t0,1,5{3,3,3,3,4} | Pentitruncated 6-orthoplex Teritruncated hexacontatetrapeton (tacox) |
8640 | 1920 | |||||
68 | t0,2,5{3,3,3,3,4} | Penticantellated 6-orthoplex Terirhombated hexacontatetrapeton (tapox) |
21120 | 3840 | |||||
69 | t0,3,4{4,3,3,3,3} | Steriruncinated 6-cube Celliprismated hexeract (copox) |
15360 | 3840 | |||||
70 | t0,2,5{4,3,3,3,3} | Penticantellated 6-cube Terirhombated hexeract (topag) |
21120 | 3840 | |||||
71 | t0,2,4{4,3,3,3,3} | Stericantellated 6-cube Cellirhombated hexeract (crax) |
28800 | 5760 | |||||
72 | t0,2,3{4,3,3,3,3} | Runcicantellated 6-cube Prismatorhombated hexeract (prox) |
13440 | 3840 | |||||
73 | t0,1,5{4,3,3,3,3} | Pentitruncated 6-cube Teritruncated hexeract (tacog) |
8640 | 1920 | |||||
74 | t0,1,4{4,3,3,3,3} | Steritruncated 6-cube Cellitruncated hexeract (catax) |
19200 | 3840 | |||||
75 | t0,1,3{4,3,3,3,3} | Runcitruncated 6-cube Prismatotruncated hexeract (potax) |
17280 | 3840 | |||||
76 | t0,1,2{4,3,3,3,3} | Cantitruncated 6-cube Great rhombated hexeract (grox) |
5760 | 1920 | |||||
77 | t0,1,2,3{3,3,3,3,4} | Runcicantitruncated 6-orthoplex Great prismated hexacontatetrapeton (gopog) |
20160 | 5760 | |||||
78 | t0,1,2,4{3,3,3,3,4} | Stericantitruncated 6-orthoplex Celligreatorhombated hexacontatetrapeton (cagorg) |
46080 | 11520 | |||||
79 | t0,1,3,4{3,3,3,3,4} | Steriruncitruncated 6-orthoplex Celliprismatotruncated hexacontatetrapeton (captog) |
40320 | 11520 | |||||
80 | t0,2,3,4{3,3,3,3,4} | Steriruncicantellated 6-orthoplex Celliprismatorhombated hexacontatetrapeton (coprag) |
40320 | 11520 | |||||
81 | t1,2,3,4{4,3,3,3,3} | Biruncicantitruncated 6-cube Great biprismato-hexeractihexacontitetrapeton (gobpoxog) |
34560 | 11520 | |||||
82 | t0,1,2,5{3,3,3,3,4} | Penticantitruncated 6-orthoplex Terigreatorhombated hexacontatetrapeton (togrig) |
30720 | 7680 | |||||
83 | t0,1,3,5{3,3,3,3,4} | Pentiruncitruncated 6-orthoplex Teriprismatotruncated hexacontatetrapeton (tocrax) |
51840 | 11520 | |||||
84 | t0,2,3,5{4,3,3,3,3} | Pentiruncicantellated 6-cube Teriprismatorhombi-hexeractihexacontitetrapeton (tiprixog) |
46080 | 11520 | |||||
85 | t0,2,3,4{4,3,3,3,3} | Steriruncicantellated 6-cube Celliprismatorhombated hexeract (coprix) |
40320 | 11520 | |||||
86 | t0,1,4,5{4,3,3,3,3} | Pentisteritruncated 6-cube Tericelli-hexeractihexacontitetrapeton (tactaxog) |
30720 | 7680 | |||||
87 | t0,1,3,5{4,3,3,3,3} | Pentiruncitruncated 6-cube Teriprismatotruncated hexeract (tocrag) |
51840 | 11520 | |||||
88 | t0,1,3,4{4,3,3,3,3} | Steriruncitruncated 6-cube Celliprismatotruncated hexeract (captix) |
40320 | 11520 | |||||
89 | t0,1,2,5{4,3,3,3,3} | Penticantitruncated 6-cube Terigreatorhombated hexeract (togrix) |
30720 | 7680 | |||||
90 | t0,1,2,4{4,3,3,3,3} | Stericantitruncated 6-cube Celligreatorhombated hexeract (cagorx) |
46080 | 11520 | |||||
91 | t0,1,2,3{4,3,3,3,3} | Runcicantitruncated 6-cube Great prismated hexeract (gippox) |
23040 | 7680 | |||||
92 | t0,1,2,3,4{3,3,3,3,4} | Steriruncicantitruncated 6-orthoplex Great cellated hexacontatetrapeton (gocog) |
69120 | 23040 | |||||
93 | t0,1,2,3,5{3,3,3,3,4} | Pentiruncicantitruncated 6-orthoplex Terigreatoprismated hexacontatetrapeton (tagpog) |
80640 | 23040 | |||||
94 | t0,1,2,4,5{3,3,3,3,4} | Pentistericantitruncated 6-orthoplex Tericelligreatorhombated hexacontatetrapeton (tecagorg) |
80640 | 23040 | |||||
95 | t0,1,2,4,5{4,3,3,3,3} | Pentistericantitruncated 6-cube Tericelligreatorhombated hexeract (tocagrax) |
80640 | 23040 | |||||
96 | t0,1,2,3,5{4,3,3,3,3} | Pentiruncicantitruncated 6-cube Terigreatoprismated hexeract (tagpox) |
80640 | 23040 | |||||
97 | t0,1,2,3,4{4,3,3,3,3} | Steriruncicantitruncated 6-cube Great cellated hexeract (gocax) |
69120 | 23040 | |||||
98 | t0,1,2,3,4,5{4,3,3,3,3} | Omnitruncated 6-cube Great teri-hexeractihexacontitetrapeton (gotaxog) |
138240 | 46080 |
The D6 family has symmetry of order 23040 (6 factorial x 25).
This family has 3×16−1=47 Wythoffian uniform polytopes, generated by marking one or more nodes of the D6 Coxeter-Dynkin diagram. Of these, 31 (2×16−1) are repeated from the B6 family and 16 are unique to this family. The 16 unique forms are enumerated below. Bowers-style acronym names are given for cross-referencing.
See list of D6 polytopes for Coxeter plane graphs of these polytopes.
# | Coxeter-Dynkin diagram | Names | Base point (Alternately signed) |
Element counts | Circumrad | |||||
---|---|---|---|---|---|---|---|---|---|---|
5 | 4 | 3 | 2 | 1 | 0 | |||||
99 | 6-demicube Hemihexeract (hax) |
(1,1,1,1,1,1) | 44 | 252 | 640 | 640 | 240 | 32 | 0.8660254 | |
100 | Truncated 6-demicube Truncated hemihexeract (thax) |
(1,1,3,3,3,3) | 76 | 636 | 2080 | 3200 | 2160 | 480 | 2.1794493 | |
101 | Cantellated 6-demicube Small rhombated hemihexeract (sirhax) |
(1,1,1,3,3,3) | 3840 | 640 | 1.9364916 | |||||
102 | Runcinated 6-demicube Small prismated hemihexeract (sophax) |
(1,1,1,1,3,3) | 3360 | 480 | 1.6583123 | |||||
103 | Stericated 6-demicube Small cellated demihexeract (sochax) |
(1,1,1,1,1,3) | 1440 | 192 | 1.3228756 | |||||
104 | Cantitruncated 6-demicube Great rhombated hemihexeract (girhax) |
(1,1,3,5,5,5) | 5760 | 1920 | 3.2787192 | |||||
105 | Runcitruncated 6-demicube Prismatotruncated hemihexeract (pithax) |
(1,1,3,3,5,5) | 12960 | 2880 | 2.95804 | |||||
106 | Runcicantellated 6-demicube Prismatorhombated hemihexeract (prohax) |
(1,1,1,3,5,5) | 7680 | 1920 | 2.7838821 | |||||
107 | Steritruncated 6-demicube Cellitruncated hemihexeract (cathix) |
(1,1,3,3,3,5) | 9600 | 1920 | 2.5980761 | |||||
108 | Stericantellated 6-demicube Cellirhombated hemihexeract (crohax) |
(1,1,1,3,3,5) | 10560 | 1920 | 2.3979158 | |||||
109 | Steriruncinated 6-demicube Celliprismated hemihexeract (cophix) |
(1,1,1,1,3,5) | 5280 | 960 | 2.1794496 | |||||
110 | Runcicantitruncated 6-demicube Great prismated hemihexeract (gophax) |
(1,1,3,5,7,7) | 17280 | 5760 | 4.0926762 | |||||
111 | Stericantitruncated 6-demicube Celligreatorhombated hemihexeract (cagrohax) |
(1,1,3,5,5,7) | 20160 | 5760 | 3.7080991 | |||||
112 | Steriruncitruncated 6-demicube Celliprismatotruncated hemihexeract (capthix) |
(1,1,3,3,5,7) | 23040 | 5760 | 3.4278274 | |||||
113 | Steriruncicantellated 6-demicube Celliprismatorhombated hemihexeract (caprohax) |
(1,1,1,3,5,7) | 15360 | 3840 | 3.2787192 | |||||
114 | Steriruncicantitruncated 6-demicube Great cellated hemihexeract (gochax) |
(1,1,3,5,7,9) | 34560 | 11520 | 4.5552168 |
There are 39 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. Bowers-style acronym names are given for cross-referencing. The E6 family has symmetry of order 51,840.
See also list of E6 polytopes for graphs of these polytopes.
# | Coxeter-Dynkin diagram Schläfli symbol |
Names | Element counts | |||||
---|---|---|---|---|---|---|---|---|
5-faces | 4-faces | Cells | Faces | Edges | Vertices | |||
115 | 221 Icosiheptaheptacontidipeton (jak) |
99 | 648 | 1080 | 720 | 216 | 27 | |
116 | Rectified 221 Rectified icosiheptaheptacontidipeton (rojak) |
126 | 1350 | 4320 | 5040 | 2160 | 216 | |
117 | Rectified 122 Rectified pentacontatetrapeton (ram) |
126 | 1566 | 6480 | 10800 | 6480 | 720 | |
118 | 122 Pentacontatetrapeton (mo) |
54 | 702 | 2160 | 2160 | 720 | 72 | |
119 | Truncated 221 Truncated icosiheptaheptacontidipeton (tojak) |
126 | 1350 | 4320 | 5040 | 2376 | 432 | |
120 | Cantellated 221 Small rhombated icosiheptaheptacontidipeton (sirjak) |
342 | 3942 | 15120 | 24480 | 15120 | 2160 | |
121 | Runcinated 221 Small demiprismated icosiheptaheptacontidipeton (shopjak) |
342 | 4662 | 16200 | 19440 | 8640 | 1080 | |
122 | Stericated 221 Trirectified pentacontatetrapeton (trim) |
558 | 4608 | 8640 | 6480 | 2160 | 270 | |
123 | Demified icosiheptaheptacontidipeton (hejak) | 342 | 2430 | 7200 | 7920 | 3240 | 432 | |
124 | Bitruncated 221 Bitruncated icosiheptaheptacontidipeton (botajik) |
2160 | ||||||
125 | Bicantellated 221 Birectified pentacontatetrapeton (barm) |
12960 | 2160 | |||||
126 | Demirectified icosiheptaheptacontidipeton (harjak) | 1080 | ||||||
127 | Truncated pentacontatetrapeton (tim) | 13680 | 1440 | |||||
128 | Cantitruncated 221 Great rhombated icosiheptaheptacontidipeton (girjak) |
4320 | ||||||
129 | Runcitruncated 221 Demiprismatotruncated icosiheptaheptacontidipeton (hopitjak) |
4320 | ||||||
130 | Steritruncated 221 Cellitruncated icosiheptaheptacontidipeton (catjak) |
2160 | ||||||
131 | Demitruncated icosiheptaheptacontidipeton (hotjak) | 2160 | ||||||
132 | Runcicantellated 221 Demiprismatorhombated icosiheptaheptacontidipeton (haprojak) |
6480 | ||||||
133 | Stericantellated 221 Small birhombated pentacontatetrapeton (sabrim) |
6480 | ||||||
134 | Small demirhombated icosiheptaheptacontidipeton (shorjak) | 4320 | ||||||
135 | Small prismated icosiheptaheptacontidipeton (spojak) | 4320 | ||||||
136 | Small prismated pentacontatetrapeton (spam) | 2160 | ||||||
137 | Bitruncated pentacontatetrapeton (bitem) | 6480 | ||||||
138 | Tritruncated icosiheptaheptacontidipeton (titajak) | 4320 | ||||||
139 | Small rhombated pentacontatetrapeton (sram) | 6480 | ||||||
140 | Runcicantitruncated 221 Great demiprismated icosiheptaheptacontidipeton (ghopjak) |
12960 | ||||||
141 | Stericantitruncated 221 Celligreatorhombated icosiheptaheptacontidipeton (cograjik) |
12960 | ||||||
142 | Great demirhombated icosiheptaheptacontidipeton (ghorjak) | 8640 | ||||||
143 | Steriruncitruncated 221 Tritruncated pentacontatetrapeton (titam) |
8640 | ||||||
144 | Prismatotruncated icosiheptaheptacontidipeton (potjak) | 12960 | ||||||
145 | Demicellitruncated icosiheptaheptacontidipeton (hictijik) | 8640 | ||||||
146 | Prismatorhombated icosiheptaheptacontidipeton (projak) | 12960 | ||||||
147 | Prismatotruncated pentacontatetrapeton (patom) | 12960 | ||||||
148 | Great rhombated pentacontatetrapeton (gram) | 12960 | ||||||
149 | Steriruncicantitruncated 221 Great birhombated pentacontatetrapeton (gabrim) |
25920 | ||||||
150 | Great prismated icosiheptaheptacontidipeton (gapjak) | 25920 | ||||||
151 | Demicelligreatorhombated icosiheptaheptacontidipeton (hocgarjik) | 25920 | ||||||
152 | Prismatorhombated pentacontatetrapeton (prom) | 25920 | ||||||
153 | Great prismated pentacontatetrapeton (gopam) | 51840 |
There are four fundamental affine Coxeter groups and 27 prismatic groups that generate regular and uniform tessellations in 5-space:
# | Coxeter group | Coxeter-Dynkin diagram | |
---|---|---|---|
1 | [3[6]] | ||
2 | h[4,33,4] [4,3,31,1] |
||
3 | [4,33,4] | ||
4 | q[4,33,4] [31,1,3,31,1] |
# | Coxeter group | Coxeter-Dynkin diagram | |
---|---|---|---|
1 | x | [3[5]]x[∞]x[∞] | |
2 | x | [4,3,31,1]x[∞] | |
3 | x | [4,3,3,4]x[∞] | |
4 | x | [31,1,1,1]x[∞] | |
5 | x | [3,4,3,3]x[∞] | |
6 | xx | [4,3,4]x[∞]x[∞] | |
7 | xx | [4,31,1]x[∞]x[∞] | |
8 | xx | [3[4]]x[∞]x[∞] | |
9 | xxx | [4,4]x[∞]x[∞]x[∞] | |
10 | xxx | [6,3]x[∞]x[∞]x[∞] | |
11 | xxx | [3[3]]x[∞]x[∞]x[∞] | |
12 | xxxx | [∞]x[∞]x[∞]x[∞]x[∞] | |
13 | xx | [3[3]]x[3[3]]x[∞] | |
14 | xx | [3[3]]x[4,4]x[∞] | |
15 | xx | [3[3]]x[6,3]x[∞] | |
16 | xx | [4,4]x[4,4]x[∞] | |
17 | xx | [4,4]x[6,3]x[∞] | |
18 | xx | [6,3]x[6,3]x[∞] | |
19 | x | [3[4]]x[3[3]] | |
20 | x | [4,31,1]x[3[3]] | |
21 | x | [4,3,4]x[3[3]] | |
22 | x | [3[4]]x[4,4] | |
23 | x | [4,31,1]x[4,4] | |
24 | x | [4,3,4]x[4,4] | |
25 | x | [3[4]]x[6,3] | |
26 | x | [4,31,1]x[6,3] | |
27 | x | [4,3,4]x[6,3] |
Regular and uniform honeycombs include:
There are no compact hyperbolic Coxeter groups of rank 6, groups that can generate honeycombs with all finite facets, and a finite vertex figure. However there are 12 noncompact hyperbolic Coxeter groups of rank 6, each generating uniform honeycombs in 5-space as permutations of rings of the Coxeter diagrams.
= [3,3[5]]: = [(3,3,4,3,3,4)]: |
= [4,3,32,1]: |
= [3,3,3,4,3]: |
= [32,1,1,1]: = [4,3,31,1,1]: |
Construction of the reflective 6-dimensional uniform polytopes are done through a Wythoff construction process, and represented through a Coxeter-Dynkin diagram, where each node represents a mirror. Nodes are ringed to imply which mirrors are active. The full set of uniform polytopes generated are based on the unique permutations of ringed nodes. Uniform 6-polytopes are named in relation to the regular polytopes in each family. Some families have two regular constructors and thus may have two ways of naming them.
Here's the primary operators available for constructing and naming the uniform 6-polytopes.
The prismatic forms and bifurcating graphs can use the same truncation indexing notation, but require an explicit numbering system on the nodes for clarity.
Operation | Extended Schläfli symbol |
Coxeter- Dynkin diagram |
Description |
---|---|---|---|
Parent | t0{p,q,r,s,t} | Any regular 6-polytope | |
Rectified | t1{p,q,r,s,t} | The edges are fully truncated into single points. The 6-polytope now has the combined faces of the parent and dual. | |
Birectified | t2{p,q,r,s,t} | Birectification reduces cells to their duals. | |
Truncated | t0,1{p,q,r,s,t} | Each original vertex is cut off, with a new face filling the gap. Truncation has a degree of freedom, which has one solution that creates a uniform truncated 6-polytope. The 6-polytope has its original faces doubled in sides, and contains the faces of the dual. |
|
Bitruncated | t1,2{p,q,r,s,t} | Bitrunction transforms cells to their dual truncation. | |
Tritruncated | t2,3{p,q,r,s,t} | Tritruncation transforms 4-faces to their dual truncation. | |
Cantellated | t0,2{p,q,r,s,t} | In addition to vertex truncation, each original edge is beveled with new rectangular faces appearing in their place. A uniform cantellation is half way between both the parent and dual forms. |
|
Bicantellated | t1,3{p,q,r,s,t} | In addition to vertex truncation, each original edge is beveled with new rectangular faces appearing in their place. A uniform cantellation is half way between both the parent and dual forms. | |
Runcinated | t0,3{p,q,r,s,t} | Runcination reduces cells and creates new cells at the vertices and edges. | |
Biruncinated | t1,4{p,q,r,s,t} | Runcination reduces cells and creates new cells at the vertices and edges. | |
Stericated | t0,4{p,q,r,s,t} | Sterication reduces 4-faces and creates new 4-faces at the vertices, edges, and faces in the gaps. | |
Pentellated | t0,5{p,q,r,s,t} | Pentellation reduces 5-faces and creates new 5-faces at the vertices, edges, faces, and cells in the gaps. (expansion operation for polypetons) | |
Omnitruncated | t0,1,2,3,4,5{p,q,r,s,t} | All five operators, truncation, cantellation, runcination, sterication, and pentellation are applied. |
Family | An | BCn | Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Regular polygon | Triangle | Square | Hexagon | Pentagon | ||||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform polychoron | 5-cell | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
n-polytopes | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes |