Password

A password is a secret word or string of characters that is used for authentication, to prove identity or gain access to a resource (example: an access code is a type of password). The password should be kept secret from those not allowed access.

The use of passwords is known to be ancient. Sentries would challenge those wishing to enter an area or approaching it to supply a password or watchword. Sentries would only allow a person or group to pass if they knew the password. In modern times, user names and passwords are commonly used by people during a log in process that controls access to protected computer operating systems, mobile phones, cable TV decoders, automated teller machines (ATMs), etc. A typical computer user may require passwords for many purposes: logging in to computer accounts, retrieving e-mail from servers, accessing programs, databases, networks, web sites, and even reading the morning newspaper online.

Despite the name, there is no need for passwords to be actual words; indeed passwords which are not actual words may be harder to guess, a desirable property. Some passwords are formed from multiple words and may more accurately be called a passphrase. The term passcode is sometimes used when the secret information is purely numeric, such as the personal identification number (PIN) commonly used for ATM access. Passwords are generally short enough to be easily memorized and typed.

For the purposes of more compellingly authenticating the identity of one computing device to another, passwords have significant disadvantages (they may be stolen, spoofed, forgotten, etc.) over authentication systems relying on cryptographic protocols, which are more difficult to circumvent.

Contents

Memorization and guessing

The easier a password is for the owner to remember generally means it will be easier for an attacker to guess.[1] Passwords which are difficult to remember will reduce the security of a system because (a) users might need to write down or electronically store the password, (b) users will need frequent password resets and (c) users are more likely to re-use the same password. Similarly, the more stringent requirements for password strength, e.g. "have a mix of uppercase and lowercase letters and digits" or "change it monthly", the greater the degree to which users will subvert the system.[2]

In The Memorability and Security of Passwords,[3] Jeff Yan et al. examine the effect of advice given to users about a good choice of password. They found that passwords based on thinking of a phrase and taking the first letter of each word are just as memorable as naively selected passwords, and just as hard to crack as randomly generated passwords. Combining two unrelated words is another good method. Having a personally designed "algorithm" for generating obscure passwords is another good method.

However, asking users to remember a password consisting of a “mix of uppercase and lowercase characters” is similar to asking them to remember a sequence of bits: hard to remember, and only a little bit harder to crack (e.g. only 128 times harder to crack for 7-letter passwords, less if the user simply capitalises one of the letters). Asking users to use "both letters and digits" will often lead to easy-to-guess substitutions such as 'E' --> '3' and 'I' --> '1', substitutions which are well known to attackers. Similarly typing the password one keyboard row higher is a common trick known to attackers.

Factors in the security of a password system

The security of a password-protected system depends on several factors. The overall system must, of course, be designed for sound security, with protection against computer viruses, man-in-the-middle attacks and the like. Physical security issues are also a concern, from deterring shoulder surfing to more sophisticated physical threats such as video cameras and keyboard sniffers. And, of course, passwords should be chosen so that they are hard for an attacker to guess and hard for an attacker to discover using any (and all) of the available automatic attack schemes. See password strength, computer security, and computer insecurity.

Nowadays it is a common practice for computer systems to hide passwords as they are typed. The purpose of this measure is to avoid bystanders reading the password. However, some argue that this practice may lead to mistakes and stress, encouraging users to choose weak passwords. As an alternative, users should have the option to show or hide passwords as they type them.[4]

Effective access control provisions may force extreme measures on criminals seeking to acquire a password or biometric token.[5] Less extreme measures include extortion, rubber hose cryptanalysis, and side channel attack.

Here are some specific password management issues that must be considered in thinking about, choosing, and handling, a password.

Rate at which an attacker can try guessed passwords

The rate at which an attacker can submit guessed passwords to the system is a key factor in determining system security. Some systems impose a time-out of several seconds after a small number (e.g., three) of failed password entry attempts. In the absence of other vulnerabilities, such systems can be effectively secure with relatively simple passwords, if they have been well chosen and are not easily guessed.[6]

Many systems store or transmit a cryptographic hash of the password in a manner that makes the hash value accessible to an attacker. When this is done, and it is very common, an attacker can work off-line, rapidly testing candidate passwords against the true password's hash value. Passwords that are used to generate cryptographic keys (e.g., for disk encryption or Wi-Fi security) can also be subjected to high rate guessing. Lists of common passwords are widely available and can make password attacks very efficient. (See Password cracking.) Security in such situations depends on using passwords or passphrases of adequate complexity, making such an attack computationally infeasible for the attacker. Some systems, such as PGP and Wi-Fi WPA, apply a computation-intensive hash to the password to slow such attacks. See key stretching.

Form of stored passwords

Some computer systems store user passwords as cleartext, against which to compare user log on attempts. If an attacker gains access to such an internal password store, all passwords—and so all user accounts—will be compromised. If some users employ the same password for accounts on different systems, those will be compromised as well.

More secure systems store each password in a cryptographically protected form, so access to the actual password will still be difficult for a snooper who gains internal access to the system, while validation of user access attempts remains possible.

A common approach stores only a "hashed" form of the plaintext password. When a user types in a password on such a system, the password handling software runs through a cryptographic hash algorithm, and if the hash value generated from the user's entry matches the hash stored in the password database, the user is permitted access. The hash value is created by applying a hash function (for maximum resistance to attack this should be a cryptographic hash function) to a string consisting of the submitted password and, usually, another value known as a salt. The salt prevents attackers from easily building a list of hash values for common passwords. MD5 and SHA1 are frequently used cryptographic hash functions.

A modified version of the DES algorithm was used for this purpose in early Unix systems. The UNIX DES function was iterated to make the hash function equivalent slow, further frustrating automated guessing attacks, and used the password candidate as a key to encrypt a fixed value, thus blocking yet another attack on the password shrouding system. More recent Unix or Unix like systems (e.g., Linux or the various BSD systems) use what most believe to be still more effective protective mechanisms based on MD5, SHA1, Blowfish, Twofish, or any of several other algorithms to prevent or frustrate attacks on stored password files.[7]

If the hash function is well designed, it will be computationally infeasible to reverse it to directly find a plaintext password. However, many systems do not protect their hashed passwords adequately, and if an attacker can gain access to the hashed values he can use widely available tools which compare the encrypted outcome of every word from some list, such as a dictionary (many are available on the Internet). Large lists of possible passwords in many languages are widely available on the Internet, as are software programs to try common variations. The existence of these dictionary attack tools constrains user password choices which are intended to resist easy attacks; they must not be findable on such lists. Obviously, words on such lists should be avoided as passwords. Use of a key stretching hash such as PBKDF2 is designed to reduce this risk.

A poorly designed hash function can make attacks feasible even if a strong password is chosen. See LM hash for a widely deployed, and insecure, example.[8]

Methods of verifying a password over a network

Various methods have been used to verify submitted passwords in a network setting:

Simple transmission of the password

Passwords are vulnerable to interception (i.e., "snooping") while being transmitted to the authenticating machine or person. If the password is carried as electrical signals on unsecured physical wiring between the user access point and the central system controlling the password database, it is subject to snooping by wiretapping methods. If it is carried as packetized data over the Internet, anyone able to watch the packets containing the logon information can snoop with a very low probability of detection.

Email is sometimes used to distribute passwords. Since most email is sent as cleartext, it is available without effort during transport to any eavesdropper. Further, the email will be stored on at least two computers as cleartext—the sender's and the recipient's. If it passes through intermediate systems during its travels, it will probably be stored on those as well, at least for some time. Attempts to delete an email from all these vulnerabilities may, or may not, succeed; backups or history files or caches on any of several systems may still contain the email. Indeed merely identifying every one of those systems may be difficult. Emailed passwords are generally an insecure method of distribution.

An example of cleartext transmission of passwords is the original Wikipedia website. When you logged into your Wikipedia account, your username and password are sent from your computer's browser through the Internet as cleartext. In principle, anyone could read them in transit and thereafter log into your account as you; Wikipedia's servers have no way of distinguishing such an attacker from you. In practice, an unknowably larger number could do so as well (e.g., employees at your Internet Service Provider, at any of the systems through which the traffic passes, etc.). More recently, Wikipedia has offered a secure login option, which, like many e-commerce sites, uses the SSL / (TLS) cryptographically based protocol to eliminate the cleartext transmission. But, because anyone can gain access to Wikipedia (without logging in at all), and then edit essentially all articles, it can be argued that there is little need to encrypt these transmissions as there's little being protected. Other websites (e.g., banks and financial institutions) have quite different security requirements, and cleartext transmission of anything is clearly insecure in those contexts.

Using client-side encryption will only protect transmission from the mail handling system server to the client machine. Previous or subsequent relays of the email will not be protected and the email will probably be stored on multiple computers, certainly on the originating and receiving computers, most often in cleartext.

Transmission through encrypted channels

The risk of interception of passwords sent over the Internet can be reduced by, among other approaches, using cryptographic protection. The most widely used is the Transport Layer Security (TLS, previously called SSL) feature built into most current Internet browsers. Most browsers alert the user of a TLS/SSL protected exchange with a server by displaying a closed lock icon, or some other sign, when TLS is in use. There are several other techniques in use; see cryptography.

Hash-based challenge-response methods

Unfortunately, there is a conflict between stored hashed-passwords and hash-based challenge-response authentication; the latter requires a client to prove to a server that he knows what the shared secret (i.e., password) is, and to do this, the server must be able to obtain the shared secret from its stored form. On many systems (including Unix-type systems) doing remote authentication, the shared secret usually becomes the hashed form and has the serious limitation of exposing passwords to offline guessing attacks. In addition, when the hash is used as a shared secret, an attacker does not need the original password to authenticate remotely; he only needs the hash.

Zero-knowledge password proofs

Rather than transmitting a password, or transmitting the hash of the password, password-authenticated key agreement systems can perform a zero-knowledge password proof, which proves knowledge of the password without exposing it.

Moving a step further, augmented systems for password-authenticated key agreement (e.g., AMP, B-SPEKE, PAK-Z, SRP-6) avoid both the conflict and limitation of hash-based methods. An augmented system allows a client to prove knowledge of the password to a server, where the server knows only a (not exactly) hashed password, and where the unhashed password is required to gain access.

Procedures for changing passwords

Usually, a system must provide a way to change a password, either because a user believes the current password has been (or might have been) compromised, or as a precautionary measure. If a new password is passed to the system in unencrypted form, security can be lost (e.g., via wiretapping) before the new password can even be installed in the password database. And, of course, if the new password is given to a compromised employee, little is gained. Some web sites include the user-selected password in an unencrypted confirmation e-mail message, with the obvious increased vulnerability.

Identity management systems are increasingly used to automate issuance of replacements for lost passwords, a feature called self service password reset. The user's identity is verified by asking questions and comparing the answers to ones previously stored (i.e., when the account was opened).

Password longevity

"Password aging" is a feature of some operating systems which forces users to change passwords frequently (e.g., quarterly, monthly or even more often). Such policies usually provoke user protest and foot-dragging at best and hostility at worst. There is often an increase in the people who note down the password and leave it where it can easily be found, as well as helpdesk calls to reset a forgotten password. Users may use simpler passwords or develop variation patterns on a consistent theme to keep their passwords memorable. Because of these issues, there is some debate[9] as to whether password aging is effective. The intended benefit is mainly that a stolen password will be made ineffective if it is reset; however in many cases, particularly with administrative or "root" accounts, once an attacker has gained access, he can make alterations to the operating system that will allow him future access even after the initial password he used expires. (see rootkit). The other less-frequently cited, and possibly more valid reason is that in the event of a long brute force attack, the password will be invalid by the time it has been cracked. Specifically, in an environment where it is considered important to know the probability of a fraudulent login in order to accept the risk, one can ensure that the total number of possible passwords multiplied by the time taken to try each one (assuming the greatest conceivable computing resources) is much greater than the password lifetime. However there is no documented evidence that the policy of requiring periodic changes in passwords increases system security.

Password aging may be required because of the nature of IT systems the password allows access to; if personal data is involved the EU Data Protection Directive is in force. Implementing such a policy, however, requires careful consideration of the relevant human factors. Humans memorize by association, so it is impossible to simply replace one memory with another. Two psychological phenomena interfere with password substitution. "Primacy" describes the tendency for an earlier memory to be retained more strongly than a later one. "Interference" is the tendency of two memories with the same association to conflict. Because of these effects most users must resort to a simple password containing a number that can be incremented each time the password is changed.

Number of users per password

Sometimes a single password controls access to a device, for example, for a network router, or password-protected mobile phone. However, in the case of a computer system, a password is usually stored for each user account, thus making all access traceable (save, of course, in the case of users sharing passwords). A would-be user on most systems must supply a username as well as a password, almost always at account set up time, and periodically thereafter. If the user supplies a password matching the one stored for the supplied username, he or she is permitted further access into the computer system. This is also the case for a cash machine, except that the 'user name' is typically the account number stored on the bank customer's card, and the PIN is usually quite short (4 to 6 digits).

Allotting separate passwords to each user of a system is preferable to having a single password shared by legitimate users of the system, certainly from a security viewpoint. This is partly because users are more willing to tell another person (who may not be authorized) a shared password than one exclusively for their use. Single passwords are also much less convenient to change because many people need to be told at the same time, and they make removal of a particular user's access more difficult, as for instance on graduation or resignation. Per-user passwords are also essential if users are to be held accountable for their activities, such as making financial transactions or viewing medical records.

Password security architecture

Common techniques used to improve the security of computer systems protected by a password include:

Some of the more stringent policy enforcement measures can pose a risk of alienating users, possibly decreasing security as a result.

Writing down passwords on paper

Historically, many security experts asked people to memorize their passwords and "Never write down a password". More recently, many security experts such as Bruce Schneier recommend that people use passwords that are too complicated to memorize, write them down on paper, and keep them in a wallet.[15][16][17][18][19][20][21]

Password cracking

Attempting to crack passwords by trying as many possibilities as time and money permit is a brute force attack. A related method, rather more efficient in most cases, is a dictionary attack. In a dictionary attack, all words in one or more dictionaries are tested. Lists of common passwords are also typically tested.

Password strength is the likelihood that a password cannot be guessed or discovered, and varies with the attack algorithm used. Passwords easily discovered are termed weak or vulnerable; passwords very difficult or impossible to discover are considered strong. There are several programs available for password attack (or even auditing and recovery by systems personnel) such as L0phtCrack, John the Ripper, and Cain; some of which use password design vulnerabilities (as found in the Microsoft LANManager system) to increase efficiency. These programs are sometimes used by system administrators to detect weak passwords proposed by users.

Studies of production computer systems have consistently shown that a large fraction of all user-chosen passwords are readily guessed automatically. For example, Columbia University found 22% of user passwords could be recovered with little effort.[22] According to Bruce Schneier, examining data from a 2006 phishing attack, 55% of MySpace passwords would be crackable in 8 hours using a commercially available Password Recovery Toolkit capable of testing 200,000 passwords per second in 2006.[23] He also reported that the single most common password was password1, confirming yet again the general lack of informed care in choosing passwords among users. (He nevertheless maintained, based on these data, that the general quality of passwords has improved over the years—for example, average length was up to eight characters from under seven in previous surveys, and less than 4% were dictionary words.[24])

Incidents

Alternatives to passwords for authentication

The numerous ways in which permanent or semi-permanent passwords can be compromised has prompted the development of other techniques. Unfortunately, some are inadequate in practice, and in any case few have become universally available for users seeking a more secure alternative.

Website password systems

Passwords are used on websites to authenticate users and are usually maintained on the Web server, meaning the browser on a remote system sends a password to the server (by HTTP POST), the server checks the password and sends back the relevant content (or an access denied message). This process eliminates the possibility of local reverse engineering as the code used to authenticate the password does not reside on the local machine.

Transmission of the password, via the browser, in plaintext means it can be intercepted along its journey to the server. Many web authentication systems use SSL to establish an encrypted session between the browser and the server, and is usually the underlying meaning of claims to have a "secure Web site". This is done automatically by the browser and increases integrity of the session, assuming neither end has been compromised and that the SSL/TLS implementations used are high quality ones.

History of passwords

Passwords or watchwords have been used since ancient times. Polybius describes the system for the distribution of watchwords in the Roman military as follows:

The way in which they secure the passing round of the watchword for the night is as follows: from the tenth maniple of each class of infantry and cavalry, the maniple which is encamped at the lower end of the street, a man is chosen who is relieved from guard duty, and he attends every day at sunset at the tent of the tribune, and receiving from him the watchword — that is a wooden tablet with the word inscribed on it – takes his leave, and on returning to his quarters passes on the watchword and tablet before witnesses to the commander of the next maniple, who in turn passes it to the one next him. All do the same until it reaches the first maniples, those encamped near the tents of the tribunes. These latter are obliged to deliver the tablet to the tribunes before dark. So that if all those issued are returned, the tribune knows that the watchword has been given to all the maniples, and has passed through all on its way back to him. If any one of them is missing, he makes inquiry at once, as he knows by the marks from what quarter the tablet has not returned, and whoever is responsible for the stoppage meets with the punishment he merits.[40]

Passwords in military use evolved to include not just a password, but a password and a counterpassword; for example in the opening days of the Battle of Normandy, paratroopers of the U.S. 101st Airborne Division used a password — flash — which was presented as a challenge, and answered with the correct response — thunder. The challenge and response were changed every three days. American paratroopers also famously used a device known as a "cricket" on D-Day in place of a password system as a temporarily unique method of identification; one metallic click given by the device in lieu of a password was to be met by two clicks in reply.[41]

Passwords have been used with computers since the earliest days of computing. MIT's CTSS, one of the first time sharing systems, was introduced in 1961. It had a LOGIN command that requested a user password. "After typing PASSWORD, the system turns off the printing mechanism, if possible, so that the user may type in his password with privacy."[42] In 1978, Robert Morris invented the idea of storing login passwords in a hashed form as part of the Unix operating system. His algorithm, known as crypt(3), used a 12-bit salt and invoked a modified form of the DES algorithm 25 times to reduce the risk of pre-computed dictionary attacks.[43]

See also

References

  1. ^ Vance, Ashlee (January 20, 2010). "If Your Password Is 123456, Just Make It HackMe". The New York Times. http://www.nytimes.com/2010/01/21/technology/21password.html. 
  2. ^ Fred Cohen and Associates
  3. ^ The Memorability and Security of Passwords
  4. ^ Lyquix Blog: Do We Need to Hide Passwords?
  5. ^ news.bbc.co.uk: Malaysia car thieves steal finger
  6. ^ Top ten passwords used in the United Kingdom
  7. ^ Password Protection for Modern Operating Systems
  8. ^ support.microsoft.com
  9. ^ Schneier on Security discussion on changing passwords
  10. ^ HP-UX security whitepaper "Passwords are limited to a maximum of eight significant characters"
  11. ^ "American Express: Strong Credit, Weak Passwords"
  12. ^ "Ten Windows Password Myths": "NT dialog boxes ... limited passwords to a maximum of 14 characters"
  13. ^ "You must provide a password between 1 and 8 characters in length"
  14. ^ "To Capitalize or Not to Capitalize?"
  15. ^ Bruce Schneier : Crypto-Gram Newsletter May 15, 2001
  16. ^ "Ten Windows Password Myths": Myth #7. You Should Never Write Down Your Password
  17. ^ "Microsoft security guru: Jot down your passwords"
  18. ^ "The Strong Password Dilemma" by Richard E. Smith: "we can summarize classical password selection rules as follows: The password must be impossible to remember and never written down."
  19. ^ "Choosing Random Passwords" by Bob Jenkins
  20. ^ "The Memorability and Security of Passwords – Some Empirical Results"
    "your password ... in a secure place, such as the back of your wallet or purse."
  21. ^ "Should I write down my passphrase?"
  22. ^ Password
  23. ^ Schneier, Real-World Passwords
  24. ^ MySpace Passwords Aren't So Dumb
  25. ^ "CERT IN-98.03". http://www.cert.org/incident_notes/IN-98.03.html. Retrieved 2009-09-09. 
  26. ^ "Consumer Password Worst Practices". http://www.imperva.com/docs/WP_Consumer_Password_Worst_Practices.pdf. 
  27. ^ "NATO Hack Attack". http://www.theregister.co.uk/2011/06/24/nato_hack_attack/. Retrieved July 24, 2011. 
  28. ^ "Anonymous Leaks 90,000 Military Email Accounts in Latest Antisec Attack". July 11, 2011. http://gizmodo.com/5820049/anonymous-leaks-90000-military-email-accounts-in-latest-antisec-attack. 
  29. ^ "Military Password Analysis". July 12, 2011. http://blog.imperva.com/2011/07/military-password-analysis.html. 
  30. ^ "Microsoft's Hotmail Bans 123456". July 18, 2011. http://blog.imperva.com/2011/07/microsofts-hotmail-bans-123456.html. 
  31. ^ eprint.iacr.org
  32. ^ T Matsumoto. H Matsumotot, K Yamada, and S Hoshino, Impact of artificial 'Gummy' Fingers on Fingerprint Systems. Proc SPIE, vol 4677, Optical Security and Counterfeit Deterrence Techniques IV or itu.int/itudoc/itu-t/workshop/security/resent/s5p4.pdf pg 356
  33. ^ waelchatila.com
  34. ^ mcpmag.com
  35. ^ searchsecurity.techtarget.com
  36. ^ Ericka Chickowski (2010-11-03). "Images Could Change the Authentication Picture". Dark Reading. http://www.darkreading.com/authentication/security/client/showArticle.jhtml?articleID=228200140. 
  37. ^ "Confident Technologies Delivers Image-Based, Multifactor Authentication to Strengthen Passwords on Public-Facing Websites". 2010-10-28. http://www.marketwire.com/press-release/Confident-Technologies-Delivers-Image-Based-Multifactor-Authentication-Strengthen-Passwords-1342854.htm. 
  38. ^ xpreeli.com
  39. ^ wipo.int
  40. ^ Polybius on the Roman Military
  41. ^ Bando, Mark Screaming Eagles: Tales of the 101st Airborne Division in World War II
  42. ^ CTSS Programmers Guide, 2nd Ed., MIT Press, 1965
  43. ^ Morris, Robert; Thompson, Ken (1978-04-03). "Password Security: A Case History.". Bell Laboratories. http://cm.bell-labs.com/cm/cs/who/dmr/passwd.ps. Retrieved 2011-05-09. 

External links