Passive house

The term passive house (Passivhaus in German) refers to the rigorous, voluntary, Passivhaus standard for energy efficiency in a building, reducing its ecological footprint.[1] It results in ultra-low energy buildings that require little energy for space heating or cooling.[2][3] A similar standard, MINERGIE-P, is used in Switzerland.[4] The standard is not confined to residential properties; several office buildings, schools, kindergartens and a supermarket have also been constructed to the standard. Passive design is not an attachment or supplement to architectural design, but a design process that is integrated with architectural design.[5] Although it is mostly applied to new buildings, it has also been used for refurbishments.

Estimates of the number of Passivhaus buildings around the world in late 2008 ranged from 15,000 to 20,000 structures.[6][7] As of August 2010, there were approximately 25,000 such certified structures of all types in Europe, while in the United States there were only 13, with a few dozens more under construction.[1] The vast majority of passive structures have been built in German-speaking countries and Scandinavia.[6]

Contents

History

Prof. Bo Adamson of Sweden, co-originator of the Passivhaus concept.
Prof. Wolfgang Feist of Germany, co-originator of the Passivhaus concept, and founder of the Passivhaus Institut.

The Passivhaus standard originated from a conversation in May 1988 between Professors Bo Adamson of Lund University, Sweden, and Wolfgang Feist of the Institut für Wohnen und Umwelt (Institute for Housing and the Environment, Germany).[8] Their concept was developed through a number of research projects,[9] aided by financial assistance from the German state of Hessen.

First examples

The eventual building of four row houses (terraced houses or town homes), was designed for four private clients by the architectural firm of professors Bott, Ridder and Westermeyer. The first Passivhaus residences were built in Darmstadt, Germany in 1990, and occupied by the clients the following year.

Further implementation and councils

In September 1996 the Passivhaus-Institut was founded, also in Darmstadt, to promote and control the standards. Since then, thousands of Passivhaus structures have been built, to an estimated 25,000+ as of 2010.[1][6][10] Most are located in Germany and Austria, with others in various countries worldwide.

After the concept had been validated at Darmstadt, with space heating 90% less than required for a standard new building of the time, the Economical Passive Houses Working Group was created in 1996. This group developed the planning package and initiated the production of the novel components that had been used, notably the windows and the high-efficiency ventilation systems. Meanwhile further passive houses were built in Stuttgart (1993), Naumburg, Hesse, Wiesbaden, and Cologne (1997).[11]

The products developed for the Passivhaus standard were further commercialised during and following the European Union sponsored CEPHEUS project, which proved the concept in five European countries over the winter of 2000–2001. In North America the first Passivhaus was built in Urbana, Illinois in 2003,[12] and the first to be certified was built in 2006 near Bemidji, Minnesota in Camp Waldsee of the German Concordia Language Villages.[13]
The first US passive retrofit project was certified in July 2010: the remodeled 2,400 sf craftsman O'Neill house in Sonoma, California.[14]

The world's first standardised passive prefabricated house was built in Ireland in 2005 by Scandinavian Homes,[15][16] a Swedish company that has since built more passive houses in England and Poland.[17]

Present day

Estimates on the number of passive houses around the world range from 15,000 to 20,000.[6][18] The vast majority have been built in German-speaking countries or Scandinavia.[6] The city of Heidelberg in Germany has recently gave birth to the Bahnstadt project, which is seen as the world's largest passive house building areas.[19]

Standards

While some techniques and technologies were specifically developed for the Passive House standard, others, such as superinsulation, already existed, and the concept of passive solar building design dates back to antiquity. There was also other previous experience with low-energy building standards, notably the German Niedrigenergiehaus (low-energy house) standard, as well as from buildings constructed to the demanding energy codes of Sweden and Denmark.

Requirements

The Passivhaus standard for central Europe requires that the building fulfills the following requirements:[20][21]

Recommendations

These standards are much higher than houses built to most normal building codes. For comparisons, see the international comparisons section below.

National partners within the 'consortium for the Promotion of European Passive Houses' are thought to have some flexibility to adapt these limits locally.[22]

Space heating requirement

By achieving the Passivhaus standards, qualified buildings are able to dispense with conventional heating systems. While this is an underlying objective of the Passivhaus standard, some type of heating will still be required and most Passivhaus buildings do include a system to provide supplemental space heating. This is normally distributed through the low-volume heat recovery ventilation system that is required to maintain air quality, rather than by a conventional hydronic or high-volume forced-air heating system, as described in the space heating section below.

Construction costs

In Passivhaus buildings, the cost savings from dispensing with the conventional heating system can be used to fund the upgrade of the building envelope and the heat recovery ventilation system. With careful design and increasing competition in the supply of the specifically designed Passivhaus building products, in Germany it is now possible to construct buildings for the same cost as those built to normal German building standards, as was done with the Passivhaus apartments at Vauban, Freiburg.[23] On average, however, passive houses are still up to 14% more expensive upfront than conventional buildings.[24]

Evaluations have indicated that while it is technically possible, the costs of meeting the Passivhaus standard increase significantly when building in Northern Europe above 60° latitude.[25][26] European cities at approximately 60° include Helsinki in Finland and Bergen in Norway. London is at 51°; Moscow is at 55°.

These facts have led a number of architects to construct buildings that use the ground under the building for massive heat storage to shift heat production from the winter to the summer. Some buildings can also shift cooling from the summer to the winter. At least one designer uses a passive thermosiphon carrying only air, so the process can be accomplished without expensive, unreliable machinery.[27] (See also Annualized geo solar)

Design and construction

Achieving the major decrease in heating energy consumption required by the standard involves a shift in approach to building design and construction. Design is carried out with the aid of the 'Passivhaus Planning Package' (PHPP),[28] and uses specifically designed computer simulations.

To achieve the standards, a number of techniques and technologies are used in combination:[2]

Passive solar design and landscape

Passive solar building design and energy-efficient landscaping support the Passive house energy conservation and can integrate them into a neighborhood and environment. Following passive solar building techniques, where possible buildings are compact in shape to reduce their surface area, with principal windows oriented towards the equator - south in the northern hemisphere and north in the southern hemisphere - to maximize passive solar gain. However, the use of solar gain, especially in temperate climate regions, is secondary to minimizing the overall house energy requirements. In climates and regions needing to reduce excessive summer passive solar heat gain, whether from the direct or reflected sources, can be done with a Brise soleil, trees, attached pergolas with vines, vertical gardens, green roofs, and other techniques.

Passive houses can be constructed from dense or lightweight materials, but some internal thermal mass is normally incorporated to reduce summer peak temperatures, maintain stable winter temperatures, and prevent possible overheating in spring or autumn before the higher sun angle "shades" mid-day wall exposure and window penetration. Exterior wall color, when the surface allows choice, for reflection or absorption insolation qualities depends on the predominant year-round ambient outdoor temperature. The use of deciduous trees and wall trellised or self attaching vines can assist in climates not at the temperature extremes.

Superinsulation

Passivhaus buildings employ superinsulation to significantly reduce the heat transfer through the walls, roof and floor compared to conventional buildings.[29] A wide range of thermal insulation materials can be used to provide the required high R-values (low U-values, typically in the 0.10 to 0.15 W/(m².K) range). Special attention is given to eliminating thermal bridges.

A disadvantage resulting from the thickness of wall insulation required is that, unless the external dimensions of the building can be enlarged to compensate, the internal floor area of the building may be less compared to traditional construction.

In Sweden, to achieve passive house standards, the insulation thickness would be 335 mm (about 13 in) (0.10 W/(m².K)) and the roof 500 mm (about 20 in) (U-value 0.066 W/(m².K)).

Advanced window technology

To meet the requirements of the Passivhaus standard, windows are manufactured with exceptionally high R-values (low U-values, typically 0.85 to 0.70 W/(m².K) for the entire window including the frame). These normally combine triple-pane insulated glazing (with a good solar heat-gain coefficient,[2][29] low-emissivity coatings, sealed argon or krypton gas filled inter-pane voids, and 'warm edge' insulating glass spacers) with air-seals and specially developed thermally broken window frames.

In Central Europe and most of the United States, for unobstructed south-facing Passivhaus windows, the heat gains from the sun are, on average, greater than the heat losses, even in mid-winter.

Airtightness

Building envelopes under the Passivhaus standard are required to be extremely airtight compared to conventional construction. Air barriers, careful sealing of every construction joint in the building envelope, and sealing of all service penetrations through it are all used to achieve this.[29]

Airtightness minimizes the amount of warm — or cool — air that can pass through the structure, enabling the mechanical ventilation system to recover the heat before discharging the air externally.[2]

Ventilation

Passive methods of natural ventilation by singular or cross ventilation; by a simple opening or enhanced by the stack effect from smaller ingress - larger egress windows and/or clerestory-openable skylight use; is obvious when the exterior temperature is acceptable.

When not, mechanical heat recovery ventilation systems, with a heat recovery rate of over 80% and high-efficiency electronically commutated motors (ECM), are employed to maintain air quality, and to recover sufficient heat to dispense with a conventional central heating system.[2] Since the building is essentially air-tight, the rate of air change can be optimized and carefully controlled at about 0.4 air changes per hour. All ventilation ducts are insulated and sealed against leakage.

Although not compulsory, earth warming tubes (typically ≈200 mm (~7,9 in) diameter, ≈40 m (~130 ft) long at a depth of ≈1.5 m (~5 ft)) are often buried in the soil to act as earth-to-air heat exchangers and pre-heat (or pre-cool) the intake air for the ventilation system. In cold weather the warmed air also prevents ice formation in the heat recovery system's heat exchanger.

Alternatively, an earth to air heat exchanger, can use a liquid circuit instead of an air circuit, with a heat exchanger (battery) on the supply air.

Space heating

In addition to using passive solar gain, Passivhaus buildings make extensive use of their intrinsic heat from internal sources—such as waste heat from lighting, white goods (major appliances) and other electrical devices (but not dedicated heaters)—as well as body heat from the people and other animals inside the building. This is due to the fact that people, on average, emit heat equivalent to 100 watts each of radiated thermal energy.

Together with the comprehensive energy conservation measures taken, this means that a conventional central heating system is not necessary, although they are sometimes installed due to client skepticism.[30]

Instead, Passive houses sometimes have a dual purpose 800 to 1,500 watt heating and/or cooling element integrated with the supply air duct of the ventilation system, for use during the coldest days. It is fundamental to the design that all the heat required can be transported by the normal low air volume required for ventilation. A maximum air temperature of 50 °C (122 °F) is applied, to prevent any possible smell of scorching from dust that escapes the filters in the system.

The air-heating element can be heated by a small heat pump, by direct solar thermal energy, annualized geothermal solar, or simply by a natural gas or oil burner. In some cases a micro-heat pump is used to extract additional heat from the exhaust ventilation air, using it to heat either the incoming air or the hot water storage tank. Small wood-burning stoves can also be used to heat the water tank, although care is required to ensure that the room in which stove is located does not overheat.

Beyond the recovery of heat by the heat recovery ventilation unit, a well designed Passive house in the European climate should not need any supplemental heat source if the heating load is kept under 10W/m².[31]

Because the heating capacity and the heating energy required by a passive house both are very low, the particular energy source selected has fewer financial implications than in a traditional building, although renewable energy sources are well suited to such low loads.

Lighting and electrical appliances

To minimize the total primary energy consumption, the many passive and active daylighting techniques are the first daytime solution to employ. For low light level days, non-daylighted spaces, and nighttime; the use of creative-sustainable lighting design using low-energy sources such as 'standard voltage' compact fluorescent lamps and solid-state lighting with Light-emitting diode-LED lamps, organic light-emitting diodes, and PLED - polymer light-emitting diodes; and 'low voltage' electrical filament-Incandescent light bulbs, and compact Metal halide, Xenon and Halogen lamps, can be used.

Solar powered exterior circulation, security, and landscape lighting - with photovoltaic cells on each fixture or connecting to a central Solar panel system, are available for gardens and outdoor needs. Low voltage systems can be used for more controlled or independent illumination, while still using less electricity than conventional fixtures and lamps. Timers, motion detection and natural light operation sensors reduce energy consumption, and light pollution even further for a Passivhaus setting.

Appliance consumer products meeting independent energy efficiency testing and receiving Ecolabel certification marks for reduced electrical-'natural-gas' consumption and product manufacturing carbon emission labels are preferred for use in Passive houses. The ecolabel certification marks of Energy Star and EKOenergy are examples.

Traits of passive houses

Due to their design, passive houses usually have the following traits:

International comparisons

Comparison with zero energy buildings

A net zero-energy building (ZEB) is a building that over a year does not use more energy than it generates. The first 1979 Zero Energy Design building used passive solar heating and cooling techniques with air-tight construction and super insulation. A few ZEB’s fail to fully exploit more affordable conservation technology and all use onsite active renewable energy technologies like photovoltaic to offset the building's primary energy consumption. Passive House and ZEB are complementary synergistic technology approaches, based on the same physics of thermal energy transfer and storage: ZEBs drive the annual energy consumption down to 0 kWh/m2 from the already low PassivHaus criteria of 120 kWh/m2 with help from on-site renewable energy sources. Energy Plus houses Energy-plus-house are similar to both PassivHaus and ZEB but emphasize the production of more energy per year than they consume, e.g., annual energy performance of -25 kWh/m2 is an Energy Plus house.

Tropical climate needs

In a tropical climate, it could be helpful for ideal internal conditions to use Energy Recovery Ventilation instead of Heat Recovery Ventilation to reduce the humidity load of ventilation on the mechanical dehumidification system. Although dehumidifiers might be used, heat pump hot water heaters also will act to cool and condense interior humidity (where it can be dumped into drains ) and dump the heat into the hot water tank. Passive cooling, solar air conditioning, and other solutions in passive solar building design need to be studied to adapt the Passive house concept for use in more regions of the world.

There is a certified Passive House in the hot and humid climate of Lafayette, Louisiana, USA, which uses Energy Recovery Ventilation and an efficient one ton air-conditioner to provide cooling and dehumidification.[35][36]

Solar access is a very important factor in any design of a passive house as it allows the structure to use the solar energy to heat and lighten the space naturally, replace electrical water heaters with solar-energy-based water heaters, in addition to providing a healthy environment inside the building.

See also

Energy portal
Renewable energy portal
Sustainable development portal

References

Notes
  1. ^ a b c Zeller, Jr., Tom. Beyond Fossil Fuels: Can We Build in a Brighter Shade of Green?, New York Times, September 26, 2010, p.BU1.
  2. ^ a b c d e Gröndahl, Mika & Gates, Guilbert. The Secrets of a Passive House, New York Times website, September 25, 2010. Retrieved September 27, 2010.
  3. ^ Definition of Passive House
  4. ^ Minergie-Standard
  5. ^ Yan Ji and Stellios Plainiotis (2006): Design for Sustainability. Beijing: China Architecture and Building Press. ISBN 7-112-08390-7
  6. ^ a b c d e Rosenthal, Elisabeth (December 26, 2008). "Houses With No Furnace but Plenty of Heat". New York Times. http://www.nytimes.com/2008/12/27/world/europe/27house.html?ref=world&pagewanted=all. Retrieved 2008-12-27. "There are now an estimated 15,000 passive houses around the world, the vast majority built in the past few years in German-speaking countries or Scandinavia." 
  7. ^ "Timber Frame takes the Passivhaus tour". January 23, 2009. http://www.buildingtalk.com/news/tim/tim140.html. Retrieved 2009-06-05. 
  8. ^ Institute for Housing and the Environment
  9. ^ Evaluation of the First Passive House
  10. ^ 11th International Passive House Conference 2007
  11. ^ European Continental Passive Houses
  12. ^ First US Passive House
  13. ^ Certified US Passive House
  14. ^ Solar Knights Construction Website has Passive House Institute U.S.certification and project details; this house is also the first certified passive house in California.
  15. ^ Construct Ireland Articles - Passive Resistance
  16. ^ Scandinavian Homes Ltd
  17. ^ Diss Express, UK - How to build a house in days
  18. ^ "Timber Frame takes the Passivhaus tour". January 23, 2009. http://www.buildingtalk.com/news/tim/tim140.html. Retrieved 2009-06-05. 
  19. ^ "Climate Seeks Protection in Heidelberg". http://www.klimabuendnis.org/heidelberg0.html?&L=0. Retrieved 2011-12-16. 
  20. ^ Passive House Requirements
  21. ^ Concepts and market acceptance of a cold climate Passive House
  22. ^ europeanpassivehouses(PEP)
  23. ^ Cost Efficient Apartment Passive House
  24. ^ "Passivhäuser im Bau bis zu 14% teurer". Franz Alt. http://www.sonnenseite.com/Aktuelle+News,Passivhaeuser+im+Bau+bis+zu+14v.h.+teurer,6,a11845.html. Retrieved 2009-06-05. 
  25. ^ Passive Houses in High Latitudes
  26. ^ Passive Houses in Norway
  27. ^ Annualized Geo-Solar Heating, Don Stephens Accessed 2009-02-05
  28. ^ Passivhaus Planning Package
  29. ^ a b c Swanson, Herb (September 26, 2010). "Energy Efficiency, a Step Further". New York Times. http://www.nytimes.com/slideshow/2010/09/26/business/energy-environment/Passive.html. Retrieved September 29, 2010. 
  30. ^ Zeller, 2010. p.BU1. Example: in the case of the Landau home described in the NYT's article, several insurance companies refused to insure their home when they were told there was no home furnace in the structure, fearing that they would be held financially liable for frozen water pipe damage.
  31. ^ Passive House Estate in Hannover-Kronsberg p72
  32. ^ Waldsee BioHaus design
  33. ^ Energy Saving Potential of Passive Houses in the UK
  34. ^ Passive Houses in Ireland
  35. ^ "Following Up on a Passive House in the Deep South". http://www.greenbuildingadvisor.com/blogs/dept/green-building-news/following-passive-house-deep-south. 
  36. ^ Clearfield, Lynne (2011). "Passive House, Aggressive Conservation". Solar Today 25 (1): 22–25. 

External links