Parasympathetic nervous system

Brain: Parasympathetic nervous system
Autonomic nervous system innervation, showing the sympathetic and parasympathetic (craniosacral) systems, in red and blue, respectively
Latin pars parasympathica divisionis autonomici systematis nervosi

The parasympathetic nervous system (PSNS) is one of the two main divisions of the autonomic nervous system (ANS). The ANS is responsible for regulation of internal organs and glands, which occurs unconsciously. To be specific, the parasympathetic system is responsible for stimulation of "rest-and-digest" activities that occur when the body is at rest, including sexual arousal, salivation, lacrimation (tears), urination, digestion, and defecation. Its action is described as being complementary to that of one of the other main branches of the ANS, the sympathetic nervous system, which is responsible for stimulating activities associated with the fight-or-flight response.

Contents

Relation to sympathetic nervous system

Sympathetic and parasympathetic divisions typically function in opposition to each other. This natural opposition is better understood as complementary in nature rather than antagonistic. For an analogy, one may think of the sympathetic division as the accelerator and the parasympathetic division as the brake. The sympathetic division typically functions in actions requiring quick responses. The parasympathetic division functions with actions that do not require immediate reaction. A useful acronym to summarize the functions of the parasympathetic nervous system is SLUDD (salivation, lacrimation, urination, digestion, and defecation).

Physical location

The parasympathetic nerves (PSNS) are autonomic (aka "visceral"[1][2]) branches of the peripheral nervous system (PNS). Parasympathetic nerve fibers arise from the central nervous system with the S2, S3, and S4 spinal nerves and from the third, seventh, ninth, and tenth cranial nerves. Because of its location, the parasympathetic system is commonly referred to as having "craniosacral outflow", which stands in contrast to the sympathetic nervous system, which is said to have "thoracolumbar outflow".

The parasympathetic nerves that arise from the S2, S3, and S4 spinal nerves are commonly referred to as the pelvic splanchnic nerves or the "nervi erigentes".

Pathways

As is true in the sympathetic nervous system, efferent parasympathetic nerve signals are carried from the central nervous system to their targets by a system of two neurons. The first neuron in this pathway is referred to as the preganglionic or presynaptic neuron. Its cell body sits in the central nervous system and its axon usually extends to a ganglion somewhere else in the body where it synapses with the dendrites of the second neuron in the chain. This second neuron is referred to as the postganglionic or postsynaptic neuron.

The axons of presynaptic parasympathetic neurons are usually long: They extend from the CNS into a ganglion that is either very close to or embedded in their target organ. As a result, the postsynaptic parasympathetic nerve fibers are very short.[3]

In the cranium, preganglionic PSN (CN III, CN VII, and CN IX) usually arise from specific nuclei in the Central Nervous System (CNS) and synapse at one of four parasympathetic ganglia: ciliary, pterygopalatine, otic, or submandibular. From these four ganglia the PSN complete their journey to target tissues via CN V (trigeminal) branches (ophthalmic nerve CN V1, maxillary nerve CN V2, mandibular nerve CN V3).

The vagus nerve (CN X) does not participate in these cranial ganglia as most of its PSN fibers are destined for a broad array of ganglia on or near thoracic viscera (esophagus, trachea, heart, lungs) and abdominal viscera (stomach, pancreas, liver, kidneys). It travels all the way down to the midgut/hindgut junction, which occurs just before the splenic flexure of the transverse colon at "Cannon-Böhm point".

The pelvic splanchnic efferent preganglionic nerve cell bodies reside in the lateral gray horn of the spinal cord at the S2-S4 spinal levels.[4] Their axons continue away from the CNS to synapse at an autonomic ganglion. The PSN ganglion where these preganglionic neurons synapse will be close to the organ of innervation. This differs from the sympathetic nervous system, where synapses between pre- and post-ganglionic efferent nerves in general occur at ganglia that are farther away from the target organ.

Sensation

The afferent fibers of the autonomic nervous system, which transmit sensory information from the internal organs of the body back to the central nervous system, are not divided into parasympathetic and sympathetic fibers as the efferent fibers are.[5] Instead, autonomic sensory information is conducted by general visceral afferent fibers.

General visceral afferent sensations are mostly unconscious visceral motor reflex sensations from hollow organs and glands that are transmitted to the CNS. While the unconscious reflex arcs normally are undetectable, in certain instances they may send pain sensations to the CNS masked as referred pain. If the peritoneal cavity becomes inflamed or if the bowel is suddenly distended, the body will interpret the afferent pain stimulus as somatic in origin. This pain is usually non-localized. The pain is also usually referred to dermatomes that are at the same spinal nerve level as the visceral afferent synapse.

Cranial Nerve Parasympathetic Paths and Control

The oculomotor nerve is responsible for several parasympathetic functions related to the eye. The oculomotor PNS fibers originate in the Edinger-Westphal nucleus in the CNS and travel through the superior orbital fissure to synapse in the ciliary ganglion located just behind the orbit (eye). From the ciliary ganglion the postganglionic PSN fibers leave via short ciliary nerve fibers, a continuation of the nasociliary nerve (a branch of ophthalmic division of the trigeminal nerve, CN V1). The short ciliary nerves innervate the orbit to control the ciliary muscle (responsible for accommodation) and the sphincter pupillae muscle, which is responsible for miosis or constriction of the pupil (in response to light or accommodation).

The parasympathetic aspect of the facial nerve (CN VII) controls secretion of the sublingual and submandibular salivary glands, the lacrimal gland, and the glands associated with the nasal cavity. The preganglionic fibers originate within the CNS in the superior salivatory nucleus and leave as the intermediate nerve (which some consider a separate cranial nerve altogether) to connect with the facial nerve just distal (further out) to it surfacing the CNS. Just after the facial nerve geniculate ganglion (general sensory ganglion) in the temporal bone, the facial nerve gives off two separate parasympathetic nerves. The first is the greater petrosal nerve and the second is the chorda tympani. The greater petrosal nerve travels through the middle ear and eventually combines with the deep petrosal nerve (sympathetic fibers) to form the nerve of the pterygoid canal. The PSN fibers of the nerve of the pterygoid canal synapse at the pterygopalatine ganglion, which is closely associated with the maxillary division of the trigeminal nerve (CN V2). The postganglionic PSN fibers leave the pterygopalatine ganglion in several directions. One division leaves on the zygomatic division of CN V2 and travels on a communicating branch to unite with the lacrimal nerve (branch of the ophthalmic nerve of CN V1) before synapsing at the lacrimal gland. These PSN to the lacrimal gland control tear production.

A separate group of PSN leaving from the pterygopalatine ganglion are the descending palatine nerves (CN V2 branch), which include the greater and lesser palatine nerves. The greater palatine PSN synapse on the hard palate and regulate mucus glands located there. The lesser palatine nerve synapses at the soft palate and controls sparse taste receptors and mucus glands. Yet another set of divisions from the pterygopalatine ganglion are the posterior, superior, and inferior lateral nasal nerves; and the nasopalatine nerves (all branches of CN V2, maxillary division of the trigeminal nerve) that bring PSN to glands of the nasal mucosa. The second PSN branch that leaves the facial nerve is the chorda tympani. This nerve carries secretomotor fibers to the submandibular and sublingual glands. The chorda tympani travels through the middle ear and attaches to the lingual nerve (mandibular division of trigeminal, CN V3). After joining the lingual nerve, the preganglionic fibers synapse at the submandibular ganglion and send postganglionic fibers to the sublingual and submandibular salivary glands.

The glossopharyngeal nerve, CNIX, has parasympathetic fibers that innervate the parotid salivary gland. The preganglionic fibers depart CNIX as the tympanic nerve and continue to the middle ear where they make up a tympanic plexus on the cochlear promontory of the mesotympanum. The tympanic plexus of nerves rejoin and form the lesser petrosal nerve and exit through the foramen ovale to synapse at the otic ganglion. From the otic ganglion postganglionic parasympathetic fibers travel with the auriculotemporal nerve (mandibular branch of trigeminal, CN V3) to the parotid salivary gland.

The vagus nerve, named from the Latin word vagus means literally "Wandering", since the nerve controls such a broad range of target tissues, has PSN that originate in the dorsal nucleus of the vagus nerve and the nucleus ambiguus in the CNS. The vagus nerve is an unusual cranial PSN in that it doesn't join the trigeminal nerve in order to get to its target tissues. Another peculiarity is that the vagus has an autonomic ganglion associated with it at approximately the level of C1 vertebra. The vagus gives no PSN to the cranium. The vagus nerve is hard to track definitively due to its ubiquitous nature in the thorax and abdomen so the major contributions will be discussed. Several PSN nerves come off the vagus nerve as it enters the thorax. One nerve is the recurrent laryngeal nerve, which becomes the inferior laryngeal nerve. From the left vagus nerve the recurrent laryngeal nerve hooks around the aorta to travel back up to the larynx and proximal esophagus while, from the right vagus nerve, the recurrent laryngeal nerve hooks around the right subclavian artery to travel back up to the same location as its counterpart. These different paths are a direct result of embryological development of the circulatory system. Each recurrent laryngeal nerve supplies the trachea and the esophagus with parasympathetic secretomotor innervation for glands associated with them (and other fibers that are not PSN).

Another nerve that comes off the vagal nerves approximately at the level of entering the thorax are the cardiac nerves. These cardiac nerves go on to form cardiac and pulmonary plexuses around the heart and lungs. As the main vagus nerves continue into the thorax they become intimately linked with the esophagus and sympathetic nerves from the sympathetic trunks to form the esophageal plexus. This is very efficient as the major function of the vagus nerve from there on will be control of the gut smooth muscles and glands. As the esophageal plexus enter the abdomen through the esophageal hiatus anterior and posterior vagal trunks form. The vagal trunks then join with preaortic sympathetic ganglion around the aorta to disperse with the blood vessels and sympathetic nerves throughout the abdomen. The extent of the PSN in the abdomen include the pancreas, kidneys, liver, gall bladder, stomach and gut tube. The vagal contribution of PSN continues down the gut tube until the end of the midgut. The midgut ends 2/3 of the way across the transverse colon near the splenic flexure.[6]

Pelvic Splanchnic Control

The pelvic splanchnic nerves, S2-4, work in tandem to innervate the pelvic viscera. Unlike in the cranium, where one PSN was in charge of one particular tissue or region, for the most part the pelvic splanchnics each contribute fibers to pelvic viscera by first traveling to one or more plexuses before being dispersed to the target tissue. These plexuses are composed of mixed autonomic nerve fibers (PSN and SN) and include the vesical, prostatic, rectal, uterovaginal, and inferior hypogastric plexus. The preganglionic neurons in the neurons do not synapse in named ganglion as in the cranium but rather in the walls of the tissues or organs that they innervate. The fiber paths are variable and each individual's autonomic nervous system in the pelvis is unique. The visceral tissues in the pelvis that the PSN control include: urinary bladder, ureters, urinary sphincter, anal sphincter, uterus, prostate, glands, vagina and penis. Unconsciously, the PSN will cause peristaltic movements of the ureters helping to move urine from the kidneys into the bladder and move feces down the intestinal tract and upon necessity, the PSN will assist excreting urine from the bladder or defecation. Stimulation of the PSN will cause the detrusor muscle (urinary bladder wall) to contract and simultaneously relax the internal sphincter urethrae muscle to relax allowing void of urine. Also, PSN stimulation to the internal anal sphincter will relax this muscle and allow defecation. There are other skeletal muscles involved with these processes but the PSN play a huge role in continence.

Another role that the PSN play in the pelvis is in sexual activity. In males, the cavernous nerves from the prostatic plexus stimulate smooth muscle in the fibrous trabeculae of the coiled helicene arteries to relax and allow blood to fill the corpora cavernosum and the corpus spongiosum of the penis, making it rigid to prepare for sexual activity. Upon emission of ejaculate, the sympathetics participate and cause peristalsis of the ductus deferens and closure of the internal urethral sphincter to prevent semen from entering the bladder. At the same time, parasympathetics cause peristalsis of the urethral muscle, and the pudendal nerve causes contraction of the bulbospongiosus (skeletal muscle is not via PSN), to forcibly emit the semen. During remission the penis becomes flaccid again. In the female, there is erectile tissue analogous to the male yet less substantial that plays a large role in sexual stimulation. The PSN cause release of secretions in the female that decrease friction. Also in the female, the parasympathetics innervate the fallopian tubes, which helps peristaltic contractions and movement of the oocyte to the uterus for implantation. The secretions from the female genital tract aids in semen migration. The PSN (and SN to a lesser extent) play a huge role in reproduction.[7]

Clinical Significance

The parasympathetic nervous system promotes digestion and the synthesis of glycogen, and allows for normal function and behavior.

Receptors

The parasympathetic nervous system uses chiefly acetylcholine (ACh) as its neurotransmitter, although other peptides (such as cholecystokinin) may act on the PSNS as a neurotransmitter.[8][9] The ACh acts on two types of receptors, the muscarinic and nicotinic cholinergic receptors. Most transmissions occur in two stages: When stimulated, the preganglionic nerve releases ACh at the ganglion, which acts on nicotinic receptors of postganglionic neurons. The postganglionic nerve then releases ACh to stimulate the muscarinic receptors of the target organ.

Types of muscarinic receptors

The five main types of muscarinic receptors:

References

  1. ^ ,http://medical-dictionary.thefreedictionary.com/visceral+nerve+fibers
  2. ^ http://www.wrongdiagnosis.com/medical/visceral_nerve.htm
  3. ^ Moore, K.L., & Agur, A.M. (2007). Essential Clinical Anatomy: Third Edition. Baltimore: Lippincott Williams & Wilkins. 42. ISBN 978-0-7817-6274-8
  4. ^ http://main.uab.edu/show.asp?durki=9149
  5. ^ Moore, K.L., & Agur, A.M. (2007). Essential Clinical Anatomy: Third Edition. Baltimore: Lippincott Williams & Wilkins. 34-35. ISBN 978-0-7817-6274-8
  6. ^ Netter. Atlas of Human Anatomy, Fourth Ed. Saunders Elsevier. 2003.
  7. ^ Moore. Essential Clinical Anatomy, Third Ed. Lippincott Williams Wilkins. 2007
  8. ^ Wank, SA. Cholecystokinin receptors. Am. J. Physiol. 269: G628-G646. 1995. PMID 7491953
  9. ^ Takai N, Shida T, Uchihashi K, Ueda Y, Yoshida Y. Cholecystokinin as Neurotransmitter and Neuromodulator in Parasympathetic Secretion in the Rat Submandibular Gland. Ann N Y Acad Sci. April 15, 1998;842:199-203.

External links