Palaeognathae

Paleognaths
Temporal range: Paleocene – Recent, 56–0 Ma
A kiwi
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Class: Aves
clade: Ornithurae
clade: Carinatae
Subclass: Neornithes
Superorder: Palaeognathae
Pycraft, 1900
Orders

Primary classification

Alternate classification

see text for more info

The Palaeognathae or paleognaths are one of the two living superorders of birds. The other living superorder is Neognathae. Together these two clades form the subclass Neornithes.

Paleognath is a word derived from the ancient Greek for "old jaws" in reference to the skeletal anatomy of the palate, which is described as more primitive and reptilian than that in other birds.[1] Paleognathous birds are uncontroversially the most primitive, or basal, living birds, though there is some controversy about the precise relationship between them and the other birds. There are also several other scientific controversies about their evolution (see below).[2]

This superorder contains four extant orders of flightless ratites and one order of flying tinamous;[3]

The order Tinamiformes (tinamous) includes nine living genera and forty-seven species.[4]

The Apterygiformes (kiwis) include five species in one genus (Apteryx).[4]

The Casuariiformes have two genera. The cassowaries (Casuarius) have three species and the emus (Dromaius) have one living and one recently extinct species.[4]

The Rheiformes (rheas) have two genera with one species each.[4]

The Struthioniformes (ostriches) have only one living species.[4]

There are extinct orders: the Lithornithiformes, the Dinornithiformes (moas), and the Aepyornithiformes (elephant birds). There are other extinct orders which have been allied with the Palaeognathae by at least one author, but their affinities are a matter of dispute: the Ambiornithiformes, the Gansuiformes, the Paleocursornithiformes, the Gobipterygidae.

Contents

Paleognath anatomy and characteristics

Paleognathes are named for a characteristic, complex architecture of the bones in the bony palate. Cracraft (1974) defined it with five characters.

  1. The vomer is large and articulates with the premaxillae and maxillopalatines anteriorly. Posteriorly the vomer fuses to the ventral surface of the pterygoid, and the palatines fuse to the ventral surface of this pterygovomer articulation.
  2. The pterygoid prevents the palatine from articulating medially with the basisphenoid.
  3. The palatine and pterygoid fuse into a rigid joint.
  4. The articulation on the pterygoid for the basipterygoid process of the basicranium is located near the articulation between the pterygoid and quadrate.
  5. The pterygoid–quadrate articulation is complex and includes the orbital process of the quadrate.[5]

Paleognathes share similar pelvis anatomy. There is a large, open ilio–ischiatic fenestra in the pelvis. The pubis and ischium are likely to be longer than the ilium, protruding out beneath the tail. The postacetabular portion of the pelvis is longer than the preacetabular portion.

Paleognathes share a pattern of grooves in the horny covering of the bill. This covering is called the rhamphotheca. The paleognath pattern has one central strip of horn, with long, triangular, strips to either side.

In Paleognathes the male incubates the eggs. The male may include in his nest the eggs of one female or more than one. He may also have eggs deposited in his nest by females that did not breed with him, in cases of nest parasitism. Only in Ostriches does the female also assist in incubating the eggs.

Tinamou anatomy and characteristics

The tinamous of Central and South America are primarily terrestrial, though they fly weakly. Tinamous have very short tail feathers, giving them an almost tailess aspect. In general they resemble galliform birds like quails and grouse. Tinamous have a very long, keeled, breastbone with an unusual three-pronged shape. This bone, the sternum, has a central blade (the Carina sterni), with two long, slender lateral trabeculae which curve to either side and nearly touch the keel posteriorly. These trabeculae may also be thought of as the rims of two large foramina that incise the posterior edge of the sternum, and extend almost its whole length. Tinamous have a proper semicircular furcula, with no trace of a hypocleidium.[6] There is an acute angle between the scapula and coracoid, as in all flying birds. The pelvis has an open ilio–ischiadic fenestra that incises the posterior edge between the ilium and ischium, as in all paleognathes. Tinamous have no true pygostyle, their caudal vertebrae remain unfused, as in ratites.[7] Tinamou feathers look like those of volant birds in that they have a rachis and two vanes. The structure of tinamou feathers is unique, however, in that they have barbs that remain joined at their tips. Thus the parallel barbs are separated only by slits between them.[8] Tinamous have uropygial glands. Tinamous range in size from 8 to 21 inches (20–53 cm) and weigh 1.4 to 80 ounces (40–2,300 g).

Ratite anatomy and characteristics

Ratite birds are strictly flightless and their anatomy reflects specializations for terrestrial life. The term "ratite" is from the Latin word for raft, ratis, because they possess a flat breastbone, or sternum, shaped like a raft. This characteristic sternum differs from that in flighted birds, where the pectoral musculature is disproportionately large to provide the power for wingbeats and the sternum develops a prominent keel, or carina sterni to anchor these muscles. The clavicles do not fuse into a furcula. Instead, if present at all, each is splint-like and lies along the medial border of the coracoid, attached there by a coraco–clavicular ligament. There is an obtuse angle between the scapula and coracoid, and the two bones fuse together to form a scapulocoracoid.[7] Ratites have reduced and simplified wing structures and strong legs. Except in some Rhea wing feathers, the barb filaments that make up the vanes of the feathers do not lock tightly together, giving the plumage a shaggier look and making it unnecessary to oil their feathers. Adult ratites have no preen gland (uropygial gland) that contains preening oil.

Ratite sizes range from 10 inches (25 cm) to 9 feet (2.7 m) and weight can be from 2.86 to 345 pounds (1.3–156.5 kg).

Ostriches are the largest struthioniforms (members of the Struthioniformes order), with long legs and neck. They range in height from 5.7 to 9 feet (1.7–2.7 m) and weigh from 139 to 345 pounds (63–156 kg). They have loose-feathered wings. Males have black and white feathers while the female has grayish brown feathers. They are unique among birds in that they retain only the third and fourth toe on each foot. Ostriches' wings have claws,or unguals, on the first and second fingers, and on the third in some individuals. Ostriches differ from other paleognathes in that they have a reduced vomer bone of the skull.

Emus are about 6.5 feet (2 m) in height and weigh 51 to 120 pounds (23–54 kg). They have long, strong legs and can run up to 30 miles per hour (48 km/h). They have short wings and the adults have brown feathers.

Rheas are 4.5 to 5.6 feet (1.4–1.7 m) and weigh 55 to 88 pounds (25–40 kg). Their feathers are gray or spotted brown and white. They have large wings but no tail feathers. They have no clavicles.

Cassowaries are 3.3 to 5.6 feet (1.0–1.7 m) in height and weigh 30 to 130 pounds (14–59 kg). They have rudimentary wings with black feathers and six stiff, porcupine-like, quills in the place of their primary and secondary feathers.

Kiwis are the smallest of ratites, ranging in height from 14 to 22 inches (36–56 cm) and weight 2.6 to 8.6 pounds (1.2–3.9 kg). They have shaggy brown feathers.

Biogeography

Today, the ratites are largely restricted to the Southern Hemisphere. In the Cretaceous, these southern continents were connected, forming a single continent called Gondwana. Gondwana is the crucial territory in a major scientific question about the evolution of Palaeognathae, and thus about the evolution of all of the Neornithes.

Did the paleognathes evolve once, from one ancestor, on Gondwana during the Cretaceous, and then ride on the daughter landmasses that became today's southern continents, or did they evolve after the Cretaceous-Tertiary extinction event from multiple flying ancestors on multiple continents around the world? The former is often called the Gondwana vicariance hypothesis. It is supported most strongly by molecular clock studies, but it is weakened by the lack of any Cretaceous or southern fossil paleognaths. The latter is called the Tertiary radiation hypothesis. This hypothesis is supported by molecular phylogeny studies and matches the fossil record, but it is weakened by morphological phylogenetic studies. Both hypotheses have been supported and challenged by many studies by many authors.[1]

Gondwana vicariance hypothesis

Cracraft (2001) gave a comprehensive review to the data and strongly supported the Gondwana vicariance hypothesis with phylogenetic evidence and historical biogeography. He cites molecular clock studies that show a basal divergence date for neornithes being around 100 million years ago. He credits the authors of the molecular clock studies with the observation that the lack of southern paleognath fossils may correspond to the relatively scarce southern Cretaceous deposits, and the relative lack of paleontological field work in the southern hemisphere. Moreover, Cracraft synthesiszes the morphological and molecular studies, noting conflicts between the two, and finds that the bulk of the evidence favors paleognath monophyly. He also notes that not only the ratites, but other basal groups of neognathous birds, show trans-Antarctic distribution, as we would expect if the paleognaths and neognaths had diverged in Gondwana.[9]

Tertiary radiation hypothesis

Feduccia (1995) emphasized the K-T event as the probable engine of diversification in the Neornithes, picturing only one or very few lineages of birds surviving the end of the Cretaceous. He also noted that birds around the world had developed ratite-like anatomies when they became flightless, and saw the affinities of modern ratites, especially kiwis, as ambiguous.[10] In this emphasis on the Tertiary, rather than Cretaceous period, as the time of basal divergences between neornithines, he follows Olson.[11]

Houde demonstrated that the Lithornithiformes, a group of flying birds that were common in the Tertiary of the northern hemisphere, were also paleognaths. He argues that the lithornithiform bird Paleotis, known from fossils in Denmark (northern hemisphere), shared unique anatomical features of the skull that make it a member of the same order as the ostriches. He also argued that the kiwis should not have reached New Zealand, which moved away from the mainland in the Early Cretaceous, if their ancestor was flightless. He therefore deduced that Lithornithiform ancestors could have reached the southern continents some 30 to 40 million years ago, and evolved flightless forms which are today's ratites.[12] This hypothesis is contradicted by some later molecular studies (Cooper 1997), but supported by others (Harshman et al. 2008) (see below).

Evolution

No unambiguously paleognathous fossil birds are known until the Cenozoic, but there have been many reports of putative paleognathes, and it has long been inferred that they may have evolved in the Cretaceous.

One study of molecular and paleontological data found that modern bird orders, including the paleognathous ones, began diverging from one another in the Early Cretaceous.[13] Benton (2005) summarized this and other molecular studies as implying that paleognaths should have arisen 110 to 120 million years ago in the Early Cretaceous. He points out, however, that there is no fossil record until 70 million years ago, leaving a 45 million year gap. He asks whether the paleognath fossils will be found one day, or whether the estimated rates of molecular evolution are too slow, and that bird evolution actually accelerated during an adaptive radiation after the K–T boundary.[14]

Hope (2002) reviewed all known bird fossils from the Mesozoic looking for evidence of the origin of the evolutionary radiation of the Neornithes. That radiation would also signal that the paleognaths had already diverged. She notes five Early Cretaceous taxa that have been assigned to the Palaeognathae. She finds that none of them can be clearly assigned as such. However, she does find evidence that the Neognathae and, therefore, also the Palaeognathae had diverged no later than the Early Campanian age of the Cretaceous period.[15]

Vegavis is a fossil bird from the Maastrichtian period of Late Cretaceous Antarctica. Vegavis is most closely related to true ducks. Because virtually all phylogenetic analyses predict that ducks diverged after paleognathes, this is evidence that paleognathes had already arisen well before then.[16]

An exceptionally preserved specimen of the extinct flying paleognathe Lithornis was published by Leonard et al. in 2005. It is an articulated and nearly complete fossil from the early Eocene of Denmark, and thought to have the best preserved lithornithiform skull ever found. The authors concluded that Lithornis was a close sister taxon to tinamous, rather than ostriches, and that the lithorniforms + tinamous were the most basal paleognaths. They concluded that all ratites, therefore, were monophyletic, descending from one common ancestor that became flightless. They also interpret the paleognath-like Limenavis, from Late Cretaceous Patagonia, as possible evidence of a Cretaceous and monophyletic origin for paleognathes.[2]

An ambitious genomic analysis of the living birds was performed in 2007, and it contradicted Leonard et al. (2005). It found that tinamous are not primitive within the paleoganthes, but among the most advanced. This requires multiple events of flightlessness within the paleognathes and partially refutes the Gondwana Vicariance Hypothesis (see above). The study looked at DNA sequences from 19 loci in 169 species. It recovered evidence that the paleognathes are one natural group (monophyletic), and that their divergence from other birds is the oldest divergence of any extant bird groups. It also placed the tinamous within the ratites, more derived than ostriches, or rheas and as a sister group to emus and kiwis, and this makes ratites paraphyletic.[17]

A related study addressed the issue of paleognath phylogeny exclusively. It used molecular analysis and looked at twenty unlinked nuclear genes. It study concluded that there were at least three events of flightlessness that produced the different ratite orders, that the similarities between the ratite orders are partly due to convergent evolution, and that the Palaeognathae are monophyletic, but the ratites are not.[18]

Other authors have questioned the monophyly of the Palaeognathae on various grounds, suggesting that they could be a hodgepodge of unrelated birds that have come to be grouped together because they are coincidentally flightless. One point is that unrelated birds have developed somewhat ratite-like anatomies multiple times around the world through convergent evolution. McDowell (1948)) asserted that the similarities in the palate anatomy of paleognathes might actually be neoteny, or retained embryonic features. He noted that there were other feature of the skull, such as the retention of sutures into adulthood, that were like those of juvenile birds. Thus, perhaps the characteristic palate was actually a frozen stage that many carinate bird embryos passed through during development. The retention of early developmental stages, then, may have been the mechanism by which various birds became flightless and came to look similar to one another.[19]

History of classifications

In the history of biology there have been many competing taxonomies of the birds now included in the Palaeognathae. The topic has been studied by Dubois (1891), Sharpe (1891), Shufeldt (1904), Sibley and Ahlquist (1972, 1981) and Cracraft (1981).

Merrem (1813) is often credited with classifying the paleognathes together, and he coined the taxon "Ratitae" (see above). However, Linnaeus (1758) placed cassowaries, emus, ostriches, and rheas together in Struthio. Lesson (1831) added the kiwis to the Ratitae. Parker (1864) reported the similarities of the palates of the tinamous and ratites, but Huxley (1867) is more widely credited with this insight. Huxley still placed the tinamous with the Carinatae of Merrem because of their keeled sterna, and thought that they were most closely related to the Galliformes.

Pycraft (1900) presented a major advance when he coined the term Palaeognathae. He rejected the Ratitae-Carinatae classification that separated tinamous and ratites. He reasoned that a keelless, or "ratite", sternum could easily evolve in unrelated birds that independently became flightless. He also recognized that the ratites were secondarily flightless. His subdivisions were based on the characters of the palatal skeleton and other organ systems. He established seven roughly modern orders of living and fossil paleognaths (Casuarii, Struthiones, Rheae, Dinornithes, Aepyornithes, Apteryges, and Crypturi – the latter his term for tinamous, after the Tinamou genus Crypturellus).

The Palaeognathae are usually considered a superorder, but authors have treated them as a taxon as high as subclass (Stresemann 1927-1934) or as low as an order (Cracraft 1981).

Cladistics

Evolutionary cladogram

     ├──────┐ (Lithornithiformes and other fossil paleognaths)
     │
     └──────┐ (Living ratites)
            ├──────┐ (Struthioniformes)
            │      └───┐ (Palaeotis)
            │          └─── (Struthio)
            │
            └──────┬──┐ (Rheiformes)
                   │  ├───┐ (Opisthodactylidae)
                   │  │   ├─── (Diogenornis)
                   │  │   └─── (Opisthodactylus)
                   │  │
                   │  └───┐ (Rheidae)
                   │      ├─── (Heterorhea)
                   │      ├─── (Hinasuri)
                   │      │
                   │      └───┬─── (Rhea americana)
                   │          │
                   │          └─── (Pterocnemia pennata)
                   │
                   ├───┬───┐ (Aepyornithiformes)
                   │   │   └─── (Aepyornithidae)
                   │   │
                   │   └───┬───┐ (Dinornithiformes)
                   │       │   ├───┐ (Dinornithidae)
                   │       │   │   └─── (Dinornis)
                   │       │   │
                   │       │   └───┐ (Emeidae)
                   │       │       ├─── (Emeinae)
                   │       │       └─── (Anomalopteryginae)
                   │       │
                   │       └───┐ (Apterygiformes)
                   │           └───┐ (Apterygidae)
                   │               ├─── (Megapteryx)
                   │               └─── (Apteryx)
                   │
                   └───┐ (Casuariformes)
                       └───┬───┐ ("Emuwaries")
                           │   │
                           │   └─── (Dromaius)
                           │
                           └─── (Casuarius)

Classification

Alternate classification

Sometimes placed here

Paraphysornis is a phorusrhacid.

Ootaxa

Locomotion

Many of the larger ratite birds have extremely long legs and the largest living bird, the ostrich, can run at speeds over 35 mph (60 km/h). Cassowaries, emus, and rheas show a similar likeness in agility and some extinct forms may have reached speeds of 45 mph (75 km/h). Moas, the largest birds, had legs over 3 feet high and may have been the fastest land animals to live outrunning even the cheetah.

Paleognaths and humans

Paleognaths probably first interacted with Australopithecines about 3 million or so years ago in the middle Pliocene in the form of an ancient ostrich or elephant bird. As Homo erectus evolved and left Africa for other continents not much contact was made with ratites until the Maori and Aborigines arrived in New Zealand and Australia. Like many other native species, they were not well-adapted to environments containing humans, and many ratites (and other Oceanic species) were hunted to extinction during this period. Worldwide, most giant birds became extinct by the end of the 18th century and most surviving species are now endangered.

Today, ratites such as the Ostrich are farmed and sometimes even kept as pets. Ratites play a large role in human culture- they are farmed, eaten, raced, protected, and kept in zoos.

See also

Footnotes

  1. ^ a b Houde, Peter W. (1988)
  2. ^ a b Leonard, Leona (2005)
  3. ^ *Wetmore, A. (1960)
  4. ^ a b c d e Clements, J. F., et. al (2010)
  5. ^ Cracraft, Joel (1974)
  6. ^ Eyton, T.C. (1867)
  7. ^ a b Feduccia, Alan (1996)
  8. ^ Davies, S. J. J. F. (2002)
  9. ^ Cracraft, Joel (2001)
  10. ^ Feduccia, Alan (1995)
  11. ^ Olson, Storrs L. (1989)
  12. ^ Houde, Peter (1986)
  13. ^ Cooper, Alan & Penny, David (1997)
  14. ^ Benton, Michael J. (2005)
  15. ^ Hope, Sylvia (2002)
  16. ^ Clarke, J.A., Tambussi, C.P., Noriega, J.I., Erickson, G.M. and Ketcham, R.A. (2005)
  17. ^ Shannon J. Hackett, et. al (2008)
  18. ^ Harshman, John, et. al (2008)
  19. ^ McDowell, Sam (1948)

References

External links