PageRank

PageRank is a link analysis algorithm, named after Larry Page[1] and used by the Google Internet search engine, that assigns a numerical weighting to each element of a hyperlinked set of documents, such as the World Wide Web, with the purpose of "measuring" its relative importance within the set. The algorithm may be applied to any collection of entities with reciprocal quotations and references. The numerical weight that it assigns to any given element E is referred to as the PageRank of E and denoted by PR(E).

The name "PageRank" is a trademark of Google, and the PageRank process has been patented (U.S. Patent 6,285,999). However, the patent is assigned to Stanford University and not to Google. Google has exclusive license rights on the patent from Stanford University. The university received 1.8 million shares of Google in exchange for use of the patent; the shares were sold in 2005 for $336 million.[2][3]

Contents

Description

A PageRank results from a mathematical algorithm based on the graph, the webgraph, created by all World Wide Web pages as nodes and hyperlinks as edges, taking into consideration authority hubs such as cnn.com or usa.gov. The rank value indicates an importance of a particular page. A hyperlink to a page counts as a vote of support. The PageRank of a page is defined recursively and depends on the number and PageRank metric of all pages that link to it ("incoming links"). A page that is linked to by many pages with high PageRank receives a high rank itself. If there are no links to a web page there is no support for that page.

Numerous academic papers concerning PageRank have been published since Page and Brin's original paper.[4] In practice, the PageRank concept has proven to be vulnerable to manipulation, and extensive research has been devoted to identifying falsely inflated PageRank and ways to ignore links from documents with falsely inflated PageRank.

Other link-based ranking algorithms for Web pages include the HITS algorithm invented by Jon Kleinberg (used by Teoma and now Ask.com), the IBM CLEVER project, and the TrustRank algorithm.

History

PageRank was developed at Stanford University by Larry Page (hence the name Page-Rank[5]) and Sergey Brin as part of a research project about a new kind of search engine.[6] Sergey Brin had the idea that information on the web could be ordered in a hierarchy by "link popularity": a page is ranked higher as there are more links to it.[7] It was co-authored by Rajeev Motwani and Terry Winograd. The first paper about the project, describing PageRank and the initial prototype of the Google search engine, was published in 1998:[4] shortly after, Page and Brin founded Google Inc., the company behind the Google search engine. While just one of many factors that determine the ranking of Google search results, PageRank continues to provide the basis for all of Google's web search tools.[8]

PageRank has been influenced by citation analysis, early developed by Eugene Garfield in the 1950s at the University of Pennsylvania, and by Hyper Search, developed by Massimo Marchiori at the University of Padua. In the same year PageRank was introduced (1998), Jon Kleinberg published his important work on HITS. Google's founders cite Garfield, Marchiori, and Kleinberg in their original paper.[4]

A small search engine called "RankDex" from IDD Information Services designed by Robin Li was, since 1996, already exploring a similar strategy for site-scoring and page ranking.[9] The technology in RankDex would be patented by 1999[10] and used later when Li founded Baidu in China.[11][12] Li's work would be referenced by some of Larry Page's U.S. patents for his Google search methods.[13]

Algorithm

PageRank is a probability distribution used to represent the likelihood that a person randomly clicking on links will arrive at any particular page. PageRank can be calculated for collections of documents of any size. It is assumed in several research papers that the distribution is evenly divided among all documents in the collection at the beginning of the computational process. The PageRank computations require several passes, called "iterations", through the collection to adjust approximate PageRank values to more closely reflect the theoretical true value.

A probability is expressed as a numeric value between 0 and 1. A 0.5 probability is commonly expressed as a "50% chance" of something happening. Hence, a PageRank of 0.5 means there is a 50% chance that a person clicking on a random link will be directed to the document with the 0.5 PageRank.

Simplified algorithm

Assume a small universe of four web pages: A, B, C and D. The initial approximation of PageRank would be evenly divided between these four documents. Hence, each document would begin with an estimated PageRank of 0.25.

In the original form of PageRank initial values were simply 1. This meant that the sum of all pages was the total number of pages on the web at that time. Later versions of PageRank (see the formulas below) would assume a probability distribution between 0 and 1. Here a simple probability distribution will be used—hence the initial value of 0.25.

If pages B, C, and D each only link to A, they would each confer 0.25 PageRank to A. All PageRank PR( ) in this simplistic system would thus gather to A because all links would be pointing to A.

PR(A)= PR(B) %2B PR(C) %2B PR(D).\,

This is 0.75.

Suppose that page B has a link to page C as well as to page A, while page D has links to all three pages. The value of the link-votes is divided among all the outbound links on a page. Thus, page B gives a vote worth 0.125 to page A and a vote worth 0.125 to page C. Only one third of D's PageRank is counted for A's PageRank (approximately 0.083).

PR(A)= \frac{PR(B)}{2}%2B \frac{PR(C)}{1}%2B \frac{PR(D)}{3}.\,

In other words, the PageRank conferred by an outbound link is equal to the document's own PageRank score divided by the normalized number of outbound links L( ) (it is assumed that links to specific URLs only count once per document).

PR(A)= \frac{PR(B)}{L(B)}%2B \frac{PR(C)}{L(C)}%2B \frac{PR(D)}{L(D)}. \,

In the general case, the PageRank value for any page u can be expressed as:

PR(u) = \sum_{v \in B_u} \frac{PR(v)}{L(v)},

i.e. the PageRank value for a page u is dependent on the PageRank values for each page v out of the set Bu (this set contains all pages linking to page u), divided by the number L(v) of links from page v.

Damping factor

The PageRank theory holds that even an imaginary surfer who is randomly clicking on links will eventually stop clicking. The probability, at any step, that the person will continue is a damping factor d. Various studies have tested different damping factors, but it is generally assumed that the damping factor will be set around 0.85.[4]

The damping factor is subtracted from 1 (and in some variations of the algorithm, the result is divided by the number of documents (N) in the collection) and this term is then added to the product of the damping factor and the sum of the incoming PageRank scores. That is,

PR(A) = {1 - d \over N} %2B d \left( \frac{PR(B)}{L(B)}%2B \frac{PR(C)}{L(C)}%2B \frac{PR(D)}{L(D)}%2B\,\cdots \right).

So any page's PageRank is derived in large part from the PageRanks of other pages. The damping factor adjusts the derived value downward. The original paper, however, gave the following formula, which has led to some confusion:

PR(A)= 1 - d %2B d \left( \frac{PR(B)}{L(B)}%2B \frac{PR(C)}{L(C)}%2B \frac{PR(D)}{L(D)}%2B\,\cdots \right).

The difference between them is that the PageRank values in the first formula sum to one, while in the second formula each PageRank gets multiplied by N and the sum becomes N. A statement in Page and Brin's paper that "the sum of all PageRanks is one"[4] and claims by other Google employees[14] support the first variant of the formula above.

To be more specific, in the latter formula, the probability for the random surfer reaching a page is weighted by the total number of web pages. So, in this version PageRank is an expected value for the random surfer visiting a page, when he restarts this procedure as often as the web has pages. If the web had 100 pages and a page had a PageRank value of 2, the random surfer would reach that page in an average twice if he restarts 100 times. Basically, the two formulas do not differ fundamentally from each other. A PageRank that has been calculated by using the former formula has to be multiplied by the total number of web pages to get the according PageRank that would have been calculated by using the latter formula. Even Page and Brin mixed up the two formulas in their most popular paper "The Anatomy of a Large-Scale Hypertextual Web Search Engine", where they claim the latter formula to form a probability distribution over web pages with the sum of all pages' PageRanks being one.[4]

Google recalculates PageRank scores each time it crawls the Web and rebuilds its index. As Google increases the number of documents in its collection, the initial approximation of PageRank decreases for all documents.

The formula uses a model of a random surfer who gets bored after several clicks and switches to a random page. The PageRank value of a page reflects the chance that the random surfer will land on that page by clicking on a link. It can be understood as a Markov chain in which the states are pages, and the transitions are all equally probable and are the links between pages.

If a page has no links to other pages, it becomes a sink and therefore terminates the random surfing process. If the random surfer arrives at a sink page, it picks another URL at random and continues surfing again.

When calculating PageRank, pages with no outbound links are assumed to link out to all other pages in the collection. Their PageRank scores are therefore divided evenly among all other pages. In other words, to be fair with pages that are not sinks, these random transitions are added to all nodes in the Web, with a residual probability of usually d = 0.85, estimated from the frequency that an average surfer uses his or her browser's bookmark feature.

So, the equation is as follows:

PR(p_i) = \frac{1-d}{N} %2B d \sum_{p_j \in M(p_i)} \frac{PR (p_j)}{L(p_j)}

where p_1, p_2, ..., p_N are the pages under consideration, M(p_i) is the set of pages that link to p_i, L(p_j) is the number of outbound links on page p_j, and N is the total number of pages.

The PageRank values are the entries of the dominant eigenvector of the modified adjacency matrix. This makes PageRank a particularly elegant metric: the eigenvector is


\mathbf{R} =
\begin{bmatrix}
PR(p_1) \\
PR(p_2) \\
\vdots \\
PR(p_N)
\end{bmatrix}

where R is the solution of the equation


\mathbf{R} =

\begin{bmatrix}
{(1-d)/ N} \\
{(1-d) / N} \\
\vdots \\
{(1-d) / N}
\end{bmatrix}

%2B d

\begin{bmatrix}
\ell(p_1,p_1) & \ell(p_1,p_2) & \cdots & \ell(p_1,p_N) \\
\ell(p_2,p_1) & \ddots &  & \vdots \\
\vdots & & \ell(p_i,p_j) & \\
\ell(p_N,p_1) & \cdots & & \ell(p_N,p_N)
\end{bmatrix}

\mathbf{R}

where the adjacency function \ell(p_i,p_j) is 0 if page p_j does not link to p_i, and normalized such that, for each j

\sum_{i = 1}^N \ell(p_i,p_j) = 1,

i.e. the elements of each column sum up to 1, so the matrix is a stochastic matrix (for more details see the computation section below). Thus this is a variant of the eigenvector centrality measure used commonly in network analysis.

Because of the large eigengap of the modified adjacency matrix above,[15] the values of the PageRank eigenvector are fast to approximate (only a few iterations are needed).

As a result of Markov theory, it can be shown that the PageRank of a page is the probability of being at that page after lots of clicks. This happens to equal t^{-1} where t is the expectation of the number of clicks (or random jumps) required to get from the page back to itself.

The main disadvantage is that it favors older pages, because a new page, even a very good one, will not have many links unless it is part of an existing site (a site being a densely connected set of pages, such as Wikipedia). The Google Directory (itself a derivative of the Open Directory Project) allows users to see results sorted by PageRank within categories. The Google Directory is the only service offered by Google where PageRank directly determines display order. In Google's other search services (such as its primary Web search) PageRank is used to weight the relevance scores of pages shown in search results.

Several strategies have been proposed to accelerate the computation of PageRank.[16]

Various strategies to manipulate PageRank have been employed in concerted efforts to improve search results rankings and monetize advertising links. These strategies have severely impacted the reliability of the PageRank concept, which seeks to determine which documents are actually highly valued by the Web community.

Google is known to penalize link farms and other schemes designed to artificially inflate PageRank. In December 2007 Google started actively penalizing sites selling paid text links. How Google identifies link farms and other PageRank manipulation tools are among Google's trade secrets.

Computation

To summarize, PageRank can be either computed iteratively or algebraically. The iterative method can be viewed differently as the power iteration method,[17][18] or power method. The basic mathematical operations performed in the iterative method and the power method are identical.

Iterative

In the former case, at t=0, an initial probability distribution is assumed, usually

PR(p_i; 0) = \frac{1}{N}.

At each time step, the computation, as detailed above, yields

PR(p_i;t%2B1) = \frac{1-d}{N} %2B d \sum_{p_j \in M(p_i)} \frac{PR (p_j; t)}{L(p_j)},

or in matrix notation

\mathbf{R}(t%2B1) = d \mathcal{M}\mathbf{R}(t) %2B \frac{1-d}{N} \mathbf{1},       (*)

where \mathbf{R}_i(t)=PR(p_i; t) and \mathbf{1} is the column vector of length N containing only ones.

The matrix \mathcal{M} is defined as

\mathcal{M}_{ij} = \begin{cases} 1 /L(p_j) , & \mbox{if }j\mbox{ links to }i\ \\ 0, & \mbox{otherwise} \end{cases}

i.e.,

\mathcal{M}�:=  (K^{-1} A)^T,

where A denotes the adjacency matrix of the graph and K is the diagonal matrix with the outdegrees in the diagonal.

The computation ends when for some small \epsilon

|\mathbf{R}(t%2B1) - \mathbf{R}(t)| < \epsilon,

i.e., when convergence is assumed.

Algebraic

In the latter case, for t \to \infty (i.e., in the steady state), the above equation (*) reads

\mathbf{R} = d \mathcal{M}\mathbf{R} %2B \frac{1-d}{N} \mathbf{1}.       (**)

The solution is given by

\mathbf{R} =  (\mathbf{I}-d \mathcal{M})^{-1}  \frac{1-d}{N}  \mathbf{1},

with the identity matrix \mathbf{I}.

The solution exists and is unique for 0 < d < 1. This can be seen by noting that \mathcal{M} is by construction a stochastic matrix and hence has an eigenvalue equal to one because of the Perron–Frobenius theorem.

Power Method

If the matrix \mathcal{M} is a transition probability, i.e., column-stochastic with no columns consisting of just zeros and \mathbf{R} is a probability distribution (i.e., |\mathbf{R}|=1, \mathbf{E}\mathbf{R}=1 where \mathbf{E} is matrix of all ones), Eq. (**) is equivalent to

\mathbf{R} = \left( d \mathcal{M} %2B \frac{1-d}{N} \mathbf{E} \right)\mathbf{R} =: \widehat{ \mathcal{M}} \mathbf{R}.       (***)

Hence PageRank \mathbf{R} is the principal eigenvector of \widehat{\mathcal{M}}. A fast and easy way to compute this is using the power method: starting with an arbitrary vector x(0), the operator \widehat\mathcal{M} is applied in succession, i.e.,

 x(t%2B1) = \widehat{\mathcal{M}} x(t),

until

|x(t%2B1) - x(t)| < \epsilon.

Note that in Eq. (***) the matrix on the right-hand side in the parenthesis can be interpreted as

 \frac{1-d}{N} \mathbf{I} = (1-d)\mathbf{P} \mathbf{1}^t,

where \mathbf{P} is an initial probability distribution. In the current case

\mathbf{P}�:= \frac{1}{N} \mathbf{1}.

Finally, if \mathcal{M} has columns with only zero values, they should be replaced with the initial probability vector \mathbf{P}. In other words

\mathcal{M}^\prime�:= \mathcal{M} %2B \mathcal{D},

where the matrix \mathcal{D} is defined as

\mathcal{D}�:= \mathbf{P} \mathbf{D}^t,

with

\mathbf{D}_i = \begin{cases} 1, & \mbox{if }L(p_i)=0\ \\ 0, & \mbox{otherwise} \end{cases}

In this case, the above two computations using \mathcal{M} only give the same PageRank if their results are normalized:

 \mathbf{R}_{\textrm{power}} = \frac{\mathbf{R}_{\textrm{iterative}}}{|\mathbf{R}_{\textrm{iterative}}|} =
\frac{\mathbf{R}_{\textrm{algebraic}}}{|\mathbf{R}_{\textrm{algebraic}}|}.

PageRank matlab/octave implementation

% Parameter M adjacency matrix where Mi,j represents the link from 'j' to 'i', such that for all 'j' sum(i, Mi,j) = 1
% Parameter d damping factor
% Parameter v_quadratic_error quadratic error for v
% Return v vector rank such as vi is the i-th rank from [0, 1]
function [v] = rank(M, d, v_quadratic_error)
N = size(M, 2);
v = rand(N, 1);
v = v ./ norm(v, 2);
last_v = ones(N, 1) * inf;
M_hat = (d .* M) + (((1 - d) / N) .* ones(N, N));
while(norm(v - last_v, 2) > v_quadratic_error)
	last_v = v;
	v = M_hat * v;
	v = v ./ norm(v, 2);
end

Code example for the octave/matlab rank function

M = [0 0 0 0 1 ; 0.5 0 0 0 0 ; 0.5 0 0 0 0 ; 0 1 0.5 0 0 ; 0 0 0.5 1 0];
rank(M, 0.80, 0.001)

Efficiency

Depending on the framework used to perform the computation, the exact implementation of the methods, and the required accuracy of the result, the computation time of the these methods can vary greatly.

Variations

Google Toolbar

The Google Toolbar's PageRank feature displays a visited page's PageRank as a whole number between 0 and 10. The most popular websites have a PageRank of 10. The least have a PageRank of 0. Google has not disclosed the precise method for determining a Toolbar PageRank value. The displayed value is not the actual value Google uses so it is only a rough guide. ‘Toolbar’ PageRank is different from Google PageRank because the PageRank displayed in the toolbar is not 100% reflective of the way Google judges the value of a website.

PageRank measures number of sites which link to particular page.[19] The PageRank of a particular page is roughly based upon the quantity of inbound links as well as the PageRank of the pages providing the links. Other factors are also part of the algorithm such as the size of a page, the number of changes and its up-to-dateness, the key texts in headlines and the words of hyperlinked anchor texts.[7]

The Google Toolbar's PageRank is updated infrequently, so often shows out of date values. The last confirmed update was 27 June 2011,[20][21] however, there was previously no confirmed update for more than a year.

SERP Rank

The Search engine results page (SERP) is the actual result returned by a search engine in response to a keyword query. The SERP consists of a list of links to web pages with associated text snippets. The SERP rank of a web page refers to the placement of the corresponding link on the SERP, where higher placement means higher SERP rank. The SERP rank of a web page is not only a function of its PageRank, but depends on a relatively large and continuously adjusted set of factors (over 200),[22][23] commonly referred to by internet marketers as "Google Love".[24] Search engine optimization (SEO) is aimed at achieving the highest possible SERP rank for a website or a set of web pages.

With the introduction of Google Places into the mainstream organic SERP, PageRank plays little to no role in ranking a business in the Local Business Results.[25] While the theory of citations is still computed in their algorithm, PageRank is not a factor since Google ranks business listings and not web pages.

Google directory PageRank

The Google Directory PageRank is an 8-unit measurement. These values can be viewed in the Google Directory. Unlike the Google Toolbar, which shows the PageRank value by a mouseover of the green bar, the Google Directory does not show the PageRank as a numeric value but only as a green bar.

False or spoofed PageRank

While the PageRank shown in the Toolbar is considered to be derived from an accurate PageRank value (at some time prior to the time of publication by Google) for most sites, this value was at one time easily manipulated. A previous flaw was that any low PageRank page that was redirected, via a HTTP 302 response or a "Refresh" meta tag, to a high PageRank page caused the lower PageRank page to acquire the PageRank of the destination page. In theory a new, PR 0 page with no incoming links could have been redirected to the Google home page—which is a PR 10—and then the PR of the new page would be upgraded to a PR10. This spoofing technique, also known as 302 Google Jacking, was a known failing or bug in the system. Any page's PageRank could have been spoofed to a higher or lower number of the webmaster's choice and only Google has access to the real PageRank of the page. Spoofing is generally detected by running a Google search for a URL with questionable PageRank, as the results will display the URL of an entirely different site (the one redirected to) in its results.

Manipulating PageRank

For search engine optimization purposes, some companies offer to sell high PageRank links to webmasters.[26] As links from higher-PR pages are believed to be more valuable, they tend to be more expensive. It can be an effective and viable marketing strategy to buy link advertisements on content pages of quality and relevant sites to drive traffic and increase a webmaster's link popularity. However, Google has publicly warned webmasters that if they are or were discovered to be selling links for the purpose of conferring PageRank and reputation, their links will be devalued (ignored in the calculation of other pages' PageRanks). The practice of buying and selling links is intensely debated across the Webmaster community. Google advises webmasters to use the nofollow HTML attribute value on sponsored links. According to Matt Cutts, Google is concerned about webmasters who try to game the system, and thereby reduce the quality and relevancy of Google search results.[26]

The intentional surfer model

The original PageRank algorithm reflects the so-called random surfer model, meaning that the PageRank of a particular page is derived from the theoretical probability of visiting that page when clicking on links at random. However, real users do not randomly surf the web, but follow links according to their interest and intention. A page ranking model that reflects the importance of a particular page as a function of how many actual visits it receives by real users is called the intentional surfer model.[27] The Google toolbar sends information to Google for every page visited, and thereby provides a basis for computing PageRank based on the intentional surfer model. The introduction of the nofollow attribute by Google to combat Spamdexing has the side effect that webmasters commonly use it on outgoing links to increase their own PageRank. This causes a loss of actual links for the Web crawlers to follow, thereby making the original PageRank algorithm based on the random surfer model potentially unreliable. Using information about users' browsing habits provided by the Google toolbar partly compensates for the loss of information caused by the nofollow attribute. The SERP rank of a page, which determines a page's actual placement in the search results, is based on a combination of the random surfer model (PageRank) and the intentional surfer model (browsing habits) in addition to other factors.[28]

Other uses

A version of PageRank has recently been proposed as a replacement for the traditional Institute for Scientific Information (ISI) impact factor,[29] and implemented at eigenfactor.org. Instead of merely counting total citation to a journal, the "importance" of each citation is determined in a PageRank fashion.

A similar new use of PageRank is to rank academic doctoral programs based on their records of placing their graduates in faculty positions. In PageRank terms, academic departments link to each other by hiring their faculty from each other (and from themselves).[30]

PageRank has been used to rank spaces or streets to predict how many people (pedestrians or vehicles) come to the individual spaces or streets.[31][32] In lexical semantics it has been used to perform Word Sense Disambiguation[33] and to automatically rank WordNet synsets according to how strongly they possess a given semantic property, such as positivity or negativity.[34]

A dynamic weighting method similar to PageRank has been used to generate customized reading lists based on the link structure of Wikipedia.[35]

A Web crawler may use PageRank as one of a number of importance metrics it uses to determine which URL to visit during a crawl of the web. One of the early working papers [36] that were used in the creation of Google is Efficient crawling through URL ordering,[37] which discusses the use of a number of different importance metrics to determine how deeply, and how much of a site Google will crawl. PageRank is presented as one of a number of these importance metrics, though there are others listed such as the number of inbound and outbound links for a URL, and the distance from the root directory on a site to the URL.

The PageRank may also be used as a methodology to measure the apparent impact of a community like the Blogosphere on the overall Web itself. This approach uses therefore the PageRank to measure the distribution of attention in reflection of the Scale-free network paradigm.

In any ecosystem, a modified version of PageRank may be used to determine species that are essential to the continuing health of the environment.[38]

An application of PageRank to the analysis of protein networks in biology is reported recently.[39]

nofollow

In early 2005, Google implemented a new value, "nofollow",[40] for the rel attribute of HTML link and anchor elements, so that website developers and bloggers can make links that Google will not consider for the purposes of PageRank—they are links that no longer constitute a "vote" in the PageRank system. The nofollow relationship was added in an attempt to help combat spamdexing.

As an example, people could previously create many message-board posts with links to their website to artificially inflate their PageRank. With the nofollow value, message-board administrators can modify their code to automatically insert "rel='nofollow'" to all hyperlinks in posts, thus preventing PageRank from being affected by those particular posts. This method of avoidance, however, also has various drawbacks, such as reducing the link value of legitimate comments. (See: Spam in blogs#nofollow)

In an effort to manually control the flow of PageRank among pages within a website, many webmasters practice what is known as PageRank Sculpting[41]—which is the act of strategically placing the nofollow attribute on certain internal links of a website in order to funnel PageRank towards those pages the webmaster deemed most important. This tactic has been used since the inception of the nofollow attribute, but may no longer be effective since Google announced that blocking PageRank transfer with nofollow does not redirect that PageRank to other links.[42]

Deprecation

PageRank was once available for the verified site maintainers through the Google Webmaster Tools interface. However on October 15, 2009, a Google employee confirmed[43] that the company had removed PageRank from its Webmaster Tools section, explaining that "We’ve been telling people for a long time that they shouldn’t focus on PageRank so much; many site owners seem to think it's the most important metric for them to track, which is simply not true."[43] The PageRank indicator is not available in Google's own Chrome browser.

The visible page rank is updated very infrequently. After the rank in the Google toolbar was updated in 3 April 2010,[20] there was no confirmed update for more than 9 months, while it was finally updated afterwards. Some authors ask not when but rather if the rank will be updated again.[44]

Google may be moving away from a publicly visible page rank in order to motivate work on content quality by discouraging content farming as a means of boosting a site's reputation. A visible, high rank can inflate the value of a site, and provides useful feedback for paid SEOs that add no value to the system.[44] In addition, Google has been criticized and even sued for perceived low ranks.

On 6 October 2011, many users mistakenly thought Google PageRank was gone. As it turns out, it was simply an update to the URL used to query the PageRank from Google.[45]

See also

Notes

  1. ^ "Google Press Center: Fun Facts". www.google.com. Archived from the original on 2009-04-24. http://web.archive.org/web/20090424093934/http://www.google.com/press/funfacts.html. 
  2. ^ Lisa M. Krieger (1 December 2005). "Stanford Earns $336 Million Off Google Stock". San Jose Mercury News, cited by redOrbit. http://www.redorbit.com/news/education/318480/stanford_earns_336_million_off_google_stock/. Retrieved 2009-02-25. 
  3. ^ Richard Brandt. "Starting Up. How Google got its groove". Stanford magazine. http://www.stanfordalumni.org/news/magazine/2004/novdec/features/startingup.html. Retrieved 2009-02-25. 
  4. ^ a b c d e f Brin, S.; Page, L. (1998). "The anatomy of a large-scale hypertextual Web search engine". Computer Networks and ISDN Systems 30: 107–117. doi:10.1016/S0169-7552(98)00110-X. ISSN 0169-7552. http://infolab.stanford.edu/pub/papers/google.pdf.  edit
  5. ^ David Vise and Mark Malseed (2005). The Google Story. p. 37. ISBN ISBN 0-553-80457-X. http://www.thegooglestory.com/. 
  6. ^ Page, Larry, "PageRank: Bringing Order to the Web", Stanford Digital Library Project, talk. August 18, 1997 (archived 2002)
  7. ^ a b 187-page study from Graz University, Austria, includes the note that also human brains are used when determining the page rank in Google
  8. ^ "Google Technology". Google.com. http://www.google.com/technology/. Retrieved 2011-05-27. 
  9. ^ Li, Yanhong (August 6, 2002). "Toward a qualitative search engine". Internet Computing, IEEE (IEEE Computer Society) 2 (4): 24–29. doi:10.1109/4236.707687. 
  10. ^ USPTO, "Hypertext Document Retrieval System and Method", U.S. Patent number: 5920859, Inventor: Yanhong Li, Filing date: Feb 5, 1997, Issue date: Jul 6, 1999
  11. ^ Greenberg, Andy, "The Man Who's Beating Google", Forbes magazine, October 05, 2009
  12. ^ "About: RankDex", rankdex.com
  13. ^ Cf. especially Lawrence Page, U.S. patents 6,799,176 (2004) "Method for scoring documents in a linked database", 7,058,628 (2006) "Method for node ranking in a linked database", and 7,269,587 (2007) "Scoring documents in a linked database"2011
  14. ^ Matt Cutts's blog: Straight from Google: What You Need to Know, see page 15 of his slides.
  15. ^ Taher Haveliwala and Sepandar Kamvar. (March 2003). "The Second Eigenvalue of the Google Matrix" (PDF). Stanford University Technical Report: 7056. arXiv:math/0307056. Bibcode 2003math......7056N. http://www-cs-students.stanford.edu/~taherh/papers/secondeigenvalue.pdf. 
  16. ^ Gianna M. Del Corso, Antonio Gullí, Francesco Romani (2005). "Fast PageRank Computation via a Sparse Linear System". Internet Mathematics 2 (3). doi:10.1.1.118.5422. 
  17. ^ Arasu, A. and Novak, J. and Tomkins, A. and Tomlin, J. (2002). "PageRank computation and the structure of the web: Experiments and algorithms". Proceedings of the Eleventh International World Wide Web Conference, Poster Track. Brisbane, Australia. pp. 107–117. doi:10.1.1.18.5264. 
  18. ^ Massimo Franceschet (2010). "PageRank: Standing on the shoulders of giants". arXiv:1002.2858 [cs.IR]. 
  19. ^ Google Webmaster central discussion on PR
  20. ^ a b http://googlepagerankupdate.com"Google Page Rank Update". May. 29, 2011. 
  21. ^ SeRoundTable January 2011 Google Toolbar PageRank Update
  22. ^ Aubuchon, Vaughn. "Google Ranking Factors - SEO Checklist". http://www.vaughns-1-pagers.com/internet/google-ranking-factors.htm. 
  23. ^ Fishkin, Rand; Jeff Pollard (April 2, 2007). "Search Engine Ranking Factors - Version 2". seomoz.org. http://www.seomoz.org/article/search-ranking-factors. Retrieved May 11, 2009. 
  24. ^ http://www.infoworld.com/t/search-engines/google-corrupt-search-me-428
  25. ^ "Ranking of listings : Ranking - Google Places Help". Google.com. http://google.com/support/places/bin/answer.py?hl=en&answer=7091. Retrieved 2011-05-27. 
  26. ^ a b "How to report paid links". mattcutts.com/blog. April 14, 2007. http://www.mattcutts.com/blog/how-to-report-paid-links/. Retrieved 2007-05-28. 
  27. ^ Jøsang, A. (2007). "Trust and Reputation Systems". In Aldini, A. (PDF). Foundations of Security Analysis and Design IV, FOSAD 2006/2007 Tutorial Lectures.. 4677. Springer LNCS 4677. pp. 209–245. doi:10.1007/978-3-540-74810-6. http://www.unik.no/people/josang/papers/Jos2007-FOSAD.pdf. 
  28. ^ SEOnotepad. "Myth of the Google Toolbar Ranking". http://www.seonotepad.com/search-engines/google-seo/myth-of-the-google-toolbar-ranking/. 
  29. ^ Johan Bollen, Marko A. Rodriguez, and Herbert Van de Sompel. (December 2006). "Journal Status". Scientometrics 69 (3): 1030. arXiv:cs.GL/0601030. Bibcode 2006cs........1030B. 
  30. ^ Benjamin M. Schmidt and Matthew M. Chingos (2007). "Ranking Doctoral Programs by Placement: A New Method" (PDF). PS: Political Science and Politics 40 (July): 523–529. http://www.people.fas.harvard.edu/~gillum/rankings_paper.pdf. 
  31. ^ B. Jiang (2006). "Ranking spaces for predicting human movement in an urban environment". International Journal of Geographical Information Science 23 (7): 823–837. arXiv:physics/0612011. doi:10.1080/13658810802022822. 
  32. ^ Jiang B., Zhao S., and Yin J. (2008). "Self-organized natural roads for predicting traffic flow: a sensitivity study". Journal of Statistical Mechanics: Theory and Experiment P07008 (07): 008. arXiv:0804.1630. Bibcode 2008JSMTE..07..008J. doi:10.1088/1742-5468/2008/07/P07008. 
  33. ^ Roberto Navigli, Mirella Lapata. "An Experimental Study of Graph Connectivity for Unsupervised Word Sense Disambiguation". IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 32(4), IEEE Press, 2010, pp. 678–692.
  34. ^ Andrea Esuli and Fabrizio Sebastiani. "PageRanking WordNet synsets: An Application to Opinion-Related Properties" (PDF). In Proceedings of the 35th Meeting of the Association for Computational Linguistics, Prague, CZ, 2007, pp. 424–431. http://nmis.isti.cnr.it/sebastiani/Publications/ACL07.pdf. Retrieved June 30, 2007. 
  35. ^ Wissner-Gross, A. D. (2006). "Preparation of topical readings lists from the link structure of Wikipedia". Proceedings of the IEEE International Conference on Advanced Learning Technology (Rolduc, Netherlands): 825. doi:10.1109/ICALT.2006.1652568. http://www.alexwg.org/publications/ProcIEEEICALT_6-825.pdf. 
  36. ^ "Working Papers Concerning the Creation of Google". Google. http://dbpubs.stanford.edu:8091/diglib/pub/projectdir/google.html. Retrieved November 29, 2006. 
  37. ^ Cho, J., Garcia-Molina, H., and Page, L. (1998). "Efficient crawling through URL ordering". Proceedings of the seventh conference on World Wide Web (Brisbane, Australia). http://dbpubs.stanford.edu:8090/pub/1998-51. 
  38. ^ Burns, Judith (2009-09-04). "Google trick tracks extinctions". BBC News. http://news.bbc.co.uk/2/hi/science/nature/8238462.stm. Retrieved 2011-05-27. 
  39. ^ G. Ivan and V. Grolmusz (2011). "When the Web meets the cell: using personalized PageRank for analyzing protein interaction networks". Bioinformatics (Vol. 27, No. 3. pp. 405-407) 27 (3): 405–7. doi:10.1093/bioinformatics/btq680. PMID 21149343. http://bioinformatics.oxfordjournals.org/content/27/3/405. 
  40. ^ "Preventing Comment Spam". Google. http://googleblog.blogspot.com/2005/01/preventing-comment-spam.html. Retrieved January 1, 2005. 
  41. ^ "PageRank Sculpting: Parsing the Value and Potential Benefits of Sculpting PR with Nofollow". SEOmoz. http://www.seomoz.org/blog/pagerank-sculpting-parsing-the-value-and-potential-benefits-of-sculpting-pr-with-nofollow. Retrieved 2011-05-27. 
  42. ^ "PageRank sculpting". Mattcutts.com. 2009-06-15. http://www.mattcutts.com/blog/pagerank-sculpting/. Retrieved 2011-05-27. 
  43. ^ a b Susan Moskwa. "PageRank Distribution Removed From WMT". http://www.google.com/support/forum/p/Webmasters/thread?tid=6a1d6250e26e9e48&hl=en. Retrieved October 16, 2009 
  44. ^ a b "Is Google Ditching PageRank?". Infocarnivore.com. 2010-12-05. http://www.infocarnivore.com/2010/12/05/is-google-ditching-pagerank/. Retrieved 2011-05-27. 
  45. ^ WhatCulture!. 6 October 2011. http://whatculture.com/technology/google-pagerank-is-not-dead.php. Retrieved 7 October 2011. 

References

Relevant patents

External links