PTF1A
Pancreas transcription factor 1 subunit alpha is a protein that in humans is encoded by the PTF1A gene.[1][2]
This gene encodes a protein that is a component of the pancreas transcription factor 1 complex (PTF1) and is known to have a role in mammalian pancreatic development. The protein plays a role in determining whether cells allocated to the pancreatic buds continue towards pancreatic organogenesis or revert back to duodenal fates. The protein is thought to be involved in the maintenance of exocrine pancreas-specific gene expression including elastase 1 and amylase. Mutations in this gene cause cerebellar agenesis and loss of expression is seen in ductal type pancreas cancers.[2]
References
Further reading
- Sommer L, Hagenbüchle O, Wellauer PK, Strubin M (1992). "Nuclear targeting of the transcription factor PTF1 is mediated by a protein subunit that does not bind to the PTF1 cognate sequence". Cell 67 (5): 987–94. doi:10.1016/0092-8674(91)90371-5. PMID 1720355.
- Roux E, Strubin M, Hagenbüchle O, Wellauer PK (1990). "The cell-specific transcription factor PTF1 contains two different subunits that interact with the DNA". Genes Dev. 3 (10): 1613–24. doi:10.1101/gad.3.10.1613. PMID 2612907.
- Krapp A, Knöfler M, Frutiger S, et al. (1996). "The p48 DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific basic helix-loop-helix protein". EMBO J. 15 (16): 4317–29. PMC 452157. PMID 8861960. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=452157.
- Krapp A, Knöfler M, Ledermann B, et al. (1999). "The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas". Genes Dev. 12 (23): 3752–63. doi:10.1101/gad.12.23.3752. PMC 317250. PMID 9851981. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=317250.
- Adell T, Gómez-Cuadrado A, Skoudy A, et al. (2000). "Role of the basic helix-loop-helix transcription factor p48 in the differentiation phenotype of exocrine pancreas cancer cells". Cell Growth Differ. 11 (3): 137–47. PMID 10768861.
- Kawaguchi Y, Cooper B, Gannon M, et al. (2002). "The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors". Nat. Genet. 32 (1): 128–34. doi:10.1038/ng959. PMID 12185368.
- McLellan AS, Langlands K, Kealey T (2003). "Exhaustive identification of human class II basic helix-loop-helix proteins by virtual library screening". Gene Expr. Patterns 2 (3–4): 329–35. doi:10.1016/S0925-4773(02)00390-8. PMID 12617822.
- Deloukas P, Earthrowl ME, Grafham DV, et al. (2004). "The DNA sequence and comparative analysis of human chromosome 10". Nature 429 (6990): 375–81. doi:10.1038/nature02462. PMID 15164054.
- Sellick GS, Barker KT, Stolte-Dijkstra I, et al. (2005). "Mutations in PTF1A cause pancreatic and cerebellar agenesis". Nat. Genet. 36 (12): 1301–5. doi:10.1038/ng1475. PMID 15543146.
- Beres TM, Masui T, Swift GH, et al. (2006). "PTF1 Is an Organ-Specific and Notch-Independent Basic Helix-Loop-Helix Complex Containing the Mammalian Suppressor of Hairless (RBP-J) or Its Paralogue, RBP-L". Mol. Cell. Biol. 26 (1): 117–30. doi:10.1128/MCB.26.1.117-130.2006. PMC 1317634. PMID 16354684. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1317634.
- Yamada M, Terao M, Terashima T, et al. (2007). "Origin of climbing fiber neurons and their developmental dependence on Ptf1a". J. Neurosci. 27 (41): 10924–34. doi:10.1523/JNEUROSCI.1423-07.2007. PMID 17928434.