Peroxisome proliferator-activated receptor delta

Peroxisome proliferator-activated receptor delta

PDB rendering based on 1gwx.
Identifiers
Symbols PPARD; FAAR; MGC3931; NR1C2; NUC1; NUCI; NUCII; PPARB
External IDs OMIM600409 MGI101884 HomoloGene4544 IUPHAR: NR1C2 GeneCards: PPARD Gene
RNA expression pattern
More reference expression data
Orthologs
Species Human Mouse
Entrez 5467 19015
Ensembl ENSG00000112033 ENSMUSG00000002250
UniProt Q03181 Q546I3
RefSeq (mRNA) NM_001171818.1 NM_011145.3
RefSeq (protein) NP_001165289.1 NP_035275.1
Location (UCSC) Chr 6:
35.31 – 35.4 Mb
Chr 17:
28.37 – 28.44 Mb
PubMed search [1] [2]

Peroxisome proliferator-activated receptor beta or delta (PPAR-β or PPAR-δ), also known as NR1C2 (nuclear receptor subfamily 1, group C, member 2) is a nuclear receptor that in humans is encoded by the PPARD gene.[1]

This gene encodes a member of the peroxisome proliferator-activated receptor (PPAR) family. It was first identified in Xenopus in 1993.[2]

Contents

Function

PPARs are nuclear hormone receptors that bind peroxisome proliferators and control the size and number of peroxisomes produced by cells. PPARs mediate a variety of biological processes, and may be involved in the development of several chronic diseases, including diabetes, obesity, atherosclerosis, and cancer.[3][4]

This protein is a potent inhibitor of ligand-induced transcription activity of PPAR-α and PPAR-γ. It may function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells.[5] The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein involved in the APC/beta-catenin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of the corpus callosum, epidermal cell proliferation, and glucose[6] and lipid metabolism.[7]

This protein has been shown to be involved in differentiation, lipid accumulation,[8] directional sensing, polarization, and migration in keratinocytes.[9]

Clinical significance

In one study, polymorphisms of PPARD were found to be associated with bipolar disorder.[10]

Pharmacology

Several high affinity ligands for PPAR-δ/β have been developed, including GW 501516 and GW 0742, which play an important role in research. In one study utilizing such a ligand, it has been shown that agonism of PPAR-δ changes the body's fuel preference from glucose to lipids.[11]

Tissue distribution

PPAR-δ/β is highly expressed in colon, small intestine, liver and keratinocytes. In contrast, heart, spleen, skeletal muscle, lung, brain and thymus show low expression.[12]

Knockout studies

Knockout mice lacking the ligand binding domain of PPAR-δ/β are viable. However these mice are smaller than the wild type both neo and postnatally. In addition, fat stores in the gonads of the mutants are smaller. The mutants also display increased epidermal hyperplasia upon induction with TPA.[13]

Ligands

Several selective ligands for PPARδ are now available.

Agonists

Natural ligands of PPAR-delta are metabolites of arachidonic acid, which include 4-hydroxy-2-nonenal (4-HNE) and 4-hydroxydodeca-(2E,6Z)-dienal (4-HDDE).[15][16]

Interactions

Peroxisome proliferator-activated receptor delta has been shown to interact with HDAC3[17][18] and NCOR2.[18]

References

  1. ^ Schmidt A, Endo N, Rutledge SJ, Vogel R, Shinar D, Rodan GA (1992). "Identification of a new member of the steroid hormone receptor superfamily that is activated by a peroxisome proliferator and fatty acids". Mol. Endocrinol. 6 (10): 1634–41. doi:10.1210/me.6.10.1634. PMID 1333051. 
  2. ^ Krey G, Keller H, Mahfoudi A, Medin J, Ozato K, Dreyer C, Wahli W (1993). "Xenopus peroxisome proliferator activated receptors: genomic organization, response element recognition, heterodimer formation with retinoid X receptor and activation by fatty acids". J Steroid Biochem Mol Biol. 47 (1–6): 65–73. doi:10.1016/0960-0760(93)90058-5. PMID 8274443. 
  3. ^ Berger J, Moller DE (2002). "The mechanisms of action of PPARs". Annu. Rev. Med. 53: 409–35. doi:10.1146/annurev.med.53.082901.104018. PMID 11818483. 
  4. ^ Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W (2006). "From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions". Prog. Lipid Res. 45 (2): 120–59. doi:10.1016/j.plipres.2005.12.002. PMID 16476485. 
  5. ^ Takayama O, Yamamoto H, Damdinsuren B, Sugita Y, Ngan CY, Xu X, Tsujino T, Takemasa I, Ikeda M, Sekimoto M, Matsuura N, Monden M (2006). "Expression of PPARδ in multistage carcinogenesis of the colorectum: implications of malignant cancer morphology". Br. J. Cancer 95 (7): 889–95. doi:10.1038/sj.bjc.6603343. PMC 2360534. PMID 16969348. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2360534. 
  6. ^ Lee CH, Olson P, Hevener A, Mehl I, Chong LW, Olefsky JM, Gonzalez FJ, Ham J, Kang H, Peters JM, Evans RM (2006). "PPARδ regulates glucose metabolism and insulin sensitivity". Proc. Natl. Acad. Sci. U.S.A. 103 (9): 3444–9. doi:10.1073/pnas.0511253103. PMC 1413918. PMID 16492734. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1413918. 
  7. ^ "Entrez Gene: PPARD peroxisome proliferator-activated receptor delta". http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5467. 
  8. ^ Schmuth M, Haqq CM, Cairns WJ, Holder JC, Dorsam S, Chang S, Lau P, Fowler AJ, Chuang G, Moser AH, Brown BE, Mao-Qiang M, Uchida Y, Schoonjans K, Auwerx J, Chambon P, Willson TM, Elias PM, Feingold KR (April 2004). "Peroxisome proliferator-activated receptor (PPAR)-beta/delta stimulates differentiation and lipid accumulation in keratinocytes". J. Invest. Dermatol. 122 (4): 971–83. doi:10.1111/j.0022-202X.2004.22412.x. PMID 15102088. 
  9. ^ Tan NS, Icre G, Montagner A, Bordier-ten-Heggeler B, Wahli W, Michalik L (October 2007). "The Nuclear Hormone Receptor Peroxisome Proliferator-Activated Receptor β/δ Potentiates Cell Chemotactism, Polarization, and Migration". Mol. Cell. Biol. 27 (20): 7161–75. doi:10.1128/MCB.00436-07. PMC 2168901. PMID 17682064. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2168901. 
  10. ^ Zandi PP, Belmonte PL, Willour VL, Goes FS, Badner JA, Simpson SG, Gershon ES, McMahon FJ, DePaulo JR Jr, Potash JB; Bipolar Disorder Phenome Group; National Institute of Mental Health Genetics Initiative Bipolar Disorder Consortium (July 2008). "Association Study of Wnt Signaling Pathway Genes in Bipolar Disorder". Arch. Gen. Psychiatry 65 (7): 785–93. doi:10.1001/archpsyc.65.7.785. PMC 3170992. PMID 18606951. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3170992. 
  11. ^ Brunmair B, Staniek K, Dörig J, Szöcs Z, Stadlbauer K, Marian V, Gras F, Anderwald C, Nohl H, Waldhäusl W, Fürnsinn C (November 2006). "Activation of PPAR-δ in isolated rat skeletal muscle switches fuel preference from glucose to fatty acids". Diabetologia 49 (11): 2713–22. doi:10.1007/s00125-006-0357-6. PMID 16960684. 
  12. ^ Girroir EE, Hollingshead HE, He P, Zhu B, Perdew GH, Peters JM (July 2008). "Quantitative expression patterns of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) protein in mice". Biochem. Biophys. Res. Commun. 371 (3): 456–61. doi:10.1016/j.bbrc.2008.04.086. PMC 2586836. PMID 18442472. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2586836. 
  13. ^ Peters JM, Lee SS, Li W, Ward JM, Gavrilova O, Everett C, Reitman ML, Hudson LD, Gonzalez FJ. (1993). "Growth, Adipose, Brain, and Skin Alterations Resulting from Targeted Disruption of the Mouse Peroxisome Proliferator-Activated Receptor β(δ)". Mol Cell Biol. 20 (14): 5119–28. doi:10.1128/MCB.20.14.5119-5128.2000. PMC 85961. PMID 10866668. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=85961. 
  14. ^ van der Veen JN, Kruit JK, Havinga R, Baller JF, Chimini G, Lestavel S, Staels B, Groot PH, Groen AK, Kuipers F (March 2005). "Reduced cholesterol absorption upon PPAR-δ activation coincides with decreased intestinal expression of NPC1L1". J. Lipid Res. 46 (3): 526–34. doi:10.1194/jlr.M400400-JLR200. PMID 15604518. 
  15. ^ Coleman JD, Prabhu KS, Thompson JT, Reddy PS, Peters JM, Peterson BR, Reddy CC, Vanden Heuvel JP (April 2007). "The oxidative stress mediator 4-hydroxynonenal is an intracellular agonist of the nuclear receptor peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta)". Free Radic. Biol. Med. 42 (8): 1155–64. doi:10.1016/j.freeradbiomed.2007.01.003. PMC 1892209. PMID 17382197. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1892209. 
  16. ^ Riahi Y, Sin-Malia Y, Cohen G, Alpert E, Gruzman A, Eckel J, Staels B, Guichardant M, Sasson S (April 2010). "The natural protective mechanism against hyperglycemia in vascular endothelial cells: roles of the lipid peroxidation product 4-hydroxydodecadienal and peroxisome proliferator-activated receptor delta". Diabetes 59 (4): 808–18. doi:10.2337/db09-1207. PMC 2844828. PMID 20107107. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2844828. 
  17. ^ Franco PJ, Li G, Wei LN (August 2003). "Interaction of nuclear receptor zinc finger DNA binding domains with histone deacetylase". Mol. Cell. Endocrinol. 206 (1–2): 1–12. doi:10.1016/S0303-7207(03)00254-5. PMID 12943985. 
  18. ^ a b Shi Y, Hon M, Evans RM (March 2002). "The peroxisome proliferator-activated receptor δ, an integrator of transcriptional repression and nuclear receptor signaling". Proc. Natl. Acad. Sci. U.S.A. 99 (5): 2613–8. doi:10.1073/pnas.052707099. PMC 122396. PMID 11867749. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=122396. 

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.