Science with Neutrons |
---|
Foundations |
Neutron scattering |
Other applications |
|
Infrastructure |
|
Neutron facilities |
OPAL (Open Pool Australian Lightwater reactor) is a 20 megawatt (MW) pool-type nuclear research reactor that was officially opened on 20 April 2007 at the Australian Nuclear Science and Technology Organisation (ANSTO) Research Establishment at Lucas Heights, located in South Sydney, Australia.
The main reactor uses are:
The reactor runs on an operation cycle of 28 days nonstop at fullpower, followed by a stop of 2 days to reshuffle the fuel.
During year 2010 OPAL ran a total of 286 days at power which represents a worldwide leading availability.
Contents |
The Argentine company INVAP was fully responsible through a turn key contract for the delivery of the reactor, performing the design, construction and commissioning. The facility is currently in operation.
OPAL was opened on 20 April 2007 by then Australian Prime Minister John Howard[1] and is the replacement for the HIFAR reactor. ANSTO received an operating license from the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) in July 2006, allowing commencement of hot commissioning, where fuel is first loaded into the reactor core. OPAL went critical for the first time on 12 August 2006 and reached full power on 3 November 2006. [2]
The reactor core consists of 16 low-enriched plate-type fuel assemblies and is located under 10 metres of water in an open pool. Light water (normal H2O) is used as the coolant and moderator while heavy water (D2O) is used as the neutron reflector.
OPAL is the centrepiece of the facilities at ANSTO, providing efficient and rapid radiopharmaceutical and radioisotope production, irradiation services (including neutron transmutation doping of silicon), neutron activation analysis and neutron beam research. OPAL is able to produce four times as many radioisotopes for nuclear medicine treatments, and a wider array of radioisotopes for the treatment of disease than the old HIFAR reactor. The modern design includes a cold neutron source (CNS).
The OPAL reactor already has received seven awards in Australia.[3]
The Bragg Institute at ANSTO hosts OPAL's neutron scattering facility. It is now running as a user facility serving the scientific community in Australia and around the world. New fundings have been received in 2009 in order to install further competitive instruments and beamlines. The actual facility comprises the following instruments:
ECHIDNA is the name of the high-resolution neutron powder diffractometer. The instrument serves to determine the crystalline structures of materials using neutron radiation analogical to X-ray techniques. It is named after the Australian monotreme echidna, as the spiny peaks of the instrument looks like an echidna.
It operates with thermal neutrons. One of the main features is the array of 128 collimators and position sensitive detectors for rapid data acquisition. ECHIDNA allows for structure determinations, texture measurements and reciprocal space mapping of single crystals in most different sample environments serving the physics, chemistry, materials, minerals and earth-science communities. ECHIDNA is part of the Bragg Institute's park of neutron scattering instruments.[4]
A set of 128 detectors each equipped which a 5' collimator in front are arranged in a 160° sector focusing to the sample. The collimators select the scattered radiation into the well defined ranges of 128 angular positions. All the collimator and detector setup is mounted on a common table which is scanned in finer steps around the sample, to be combinded further to a continuous diffraction pattern.
PLATYPUS is a time-of-flight reflectometer built on the cold neutron. The instrument serves to determine the structure of interfaces using highly collimated neutron beams. These beams are shone on to the surface at low angles (typically less than 2 degrees) and the intensity of the reflected radiation is measured as a function of angle of incidence.
It operates using cold neutrons, with a wavelength band of 0.2–2.0 nm. Although up to three different angles of incidence are required for each reflectivity curve, the time-of-flight nature means that timescales of kinetic processes are accessible. By analysing the reflected signal one builds a picture of the chemical structure of the interface. This instrument can be used for examining biomembranes, lipid bilayers, magnetism, adsorbed surfactant layers, etc.
WOMBAT is a high-intensity neutron powder diffractometer. The instrument serves to determine the crystalline structures of materials using neutron radiation analogical to X-ray techniques. It is named after the wombat, a marsupial indigenous to Australia.
It will operate with thermal neutrons. It has been designed for highest flux and data acquisition speed in order to deliver time resolved diffraction patterns in a fraction of a second. WOMBAT will concentrate on in-situ studies and time critical investigations, such as structure determinations, texture measurements and reciprocal space mapping of single crystals in most different sample environments serving the physics, chemistry, materials, minerals and earth-science communities.
KOWARI is a neutron residual stress diffractometer. Strain scanning using thermal neutrons is a powder diffraction technique in a polycrystalline block of material probing the change of atomic spacing due to internal or external stress. It is named after the kowari, an Australian marsupial.
It provides a diagnostic non-destructive tool to optimize e.g. post-weld heat treatment (PWHT, similar to tempering) of welded structures. Tensile stresses for example drive crack growth in engineering components and compressive stresses inhibit crack growth (for example cold-expanded holes subject to fatigue cycling). Life extension strategies have high economic impact and strain scanning provides the stresses needed to calculate remaining life as well as the means to monitor the condition of components since it is non-destructive. One of the main features is the sample table that will allow to examine large engineering components while orienting and positioning them very accurately.
Following the discovery of loose fuel plates during a routine inspection, ANSTO announced on 27 July 2007 that the reactor would be shut down for 8 weeks to fix the fuel plates and a minor fault causing light water to seep into the reactor's heavy water.[5][6] In the end, the shutdown lasted 10 months. The supply of radiopharmaceuticals was rationed, causing the postponement of some treatments for patients.[7] OPAL returned to full operational power on 23 May 2008, following approval by the nuclear regulator, ARPANSA to use a modified fuel design.