ONIOM

The ONIOM (our own n-layered integrated molecular orbital and molecular mechanics) is a computational approach developed by Morokuma and co-workers. ONIOM is the hybrid method that enables different levels of theory to be applied to different parts of a molecule/system and combined to produce reliable geometry and energy at reduced computational time.[1][2][3]

ONIOM computational approach was found particularly useful for biomolecular systems [4] as well as for transition metal complexes and catalysis.[5]

Contents

Codes that support ONIOM

See also

External links

References

  1. ^ Dapprich, I. Komaromi, K.S. Byun, K. Morokuma, and M.J. Frisch (1999). "A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives". Journal of Molecular Structure: THEOCHEM 461-462: 1. doi:10.1016/S0166-1280(98)00475-8. 
  2. ^ Vreven, T; Morokuma, K (2006). "Chapter 3 Hybrid Methods: ONIOM(QM:MM) and QM/MM". Annual Reports in Computational Chemistry 2: 35. doi:10.1016/S1574-1400(06)02003-2. 
  3. ^ Svensson, Mats; Humbel, StéPhane; Froese, Robert D. J.; Matsubara, Toshiaki; Sieber, Stefan; Morokuma, Keiji (1996). "ONIOM:  A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2+ H2Oxidative Addition". The Journal of Physical Chemistry 100 (50): 19357. doi:10.1021/jp962071j. 
  4. ^ Senn, H; Thiel, W (2007). "QM/MM studies of enzymes". Current Opinion in Chemical Biology 11 (2): 182–7. doi:10.1016/j.cbpa.2007.01.684. PMID 17307018. 
  5. ^ Ananikov, Valentine P.; Musaev, Djamaladdin G.; Morokuma, Keiji (2010). "Real size of ligands, reactants and catalysts: Studies of structure, reactivity and selectivity by ONIOM and other hybrid computational approaches☆". Journal of Molecular Catalysis A: Chemical 324: 104. doi:10.1016/j.molcata.2010.03.015.