In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n such that xn = 0.
The term was introduced by Benjamin Peirce[1] in the context of elements of an algebra that vanish when raised to a power.
Contents |
No nilpotent element can be a unit (except in the trivial ring {0} which has only a single element 0 = 1). All non-zero nilpotent elements are zero divisors.
An n-by-n matrix A with entries from a field is nilpotent if and only if its characteristic polynomial is tn.
The nilpotent elements from a commutative ring form an ideal; this is a consequence of the binomial theorem. This ideal is the nilradical of the ring. Every nilpotent element in a commutative ring is contained in every prime ideal of that ring, and in fact the intersection of all these prime ideals is equal to the nilradical.
If x is nilpotent, then 1 − x is a unit, because xn = 0 entails
Further, if x is nilpotent, then 1 + x is also a unit.[2]
An operand Q that satisfies Q2 = 0 is nilpotent. Grassmann numbers which allow a path integral representation for Fermionic fields are nilpotents since their squares vanish. The BRST charge is an important example in physics. As linear operators form an associative algebra and thus a ring, this is a special case of the initial definition.[3][4] More generally, in view of the above definitions, an operator Q is nilpotent if there is n∈N such that Qn = 0 (the zero function). Thus, a linear map is nilpotent iff it has a nilpotent matrix in some basis. Another example for this is the exterior derivative (again with n = 2). Both are linked, also through supersymmetry and Morse theory[5], as shown by Edward Witten in a celebrated article.[6]
The electromagnetic field of a plane wave without sources is nilpotent when it is expressed in terms of the algebra of physical space.[7]
The two-dimensional dual numbers contain a nilpotent basis element. Other algebras and numbers that contain nilpotent spaces include split-quaternions (coquaternions), split-octonions, biquaternions , and complex octonions .