Neural top down control of physiology
Neural top down control of physiology concerns the direct regulation by the brain of physiological functions (in addition to smooth muscle and glandular ones). Cellular functions include the immune system’s production of T-lymphocytes and antibodies, and nonimmune related homeostatic functions such as liver gluconeogenesis, sodium reabsorption, osmoregulation, and brown adipose tissue nonshivering thermogenesis. This regulation occurs through the sympathetic and parasympathetic system (the autonomic nervous system), and their direct innervation of body organs and tissues that starts in the brainstem. There is also a noninnervation hormonal control through the hypothalamus and pituitary (HPA). These lower brain areas are under control of cerebral cortex ones. Such cortical regulation differs between its left and right sides. Pavlovian conditioning shows that brain control over basic cell level physiological function can be learnt.
Higher brain
Cerebral cortex
Sympathetic and parasympathetic nervous systems and the hypothalamus are regulated by the higher brain.[1][2][3][4] Through them, the higher cerebral cortex areas can control the immune system, and the body’s homeostatic and stress physiology. Areas doing this include the insular cortex,[5][6][7] the orbital, and the medial prefrontal cortices.[8][9] These cerebral areas also control smooth muscle and glandular physiological processes through the sympathetic and parasympathetic nervous system including blood circulation, urogenital, gastrointestinal[10] functions, pancreatic gut secretions,[11] respiration, coughing, vomiting, piloerection, pupil dilation, lacrimation and salivation.[12]
Lateralization
The sympathetic nervous system is predominantly controlled by the right side of the brain (focused upon the insular cortex), while the left side predominantely controls the parasympathetic nervous system.[4] The cerebral cortex in rodents shows lateral specialization in its regulation of immunity with immunosuppression being controlled by the right hemisphere, and immunopotention by the left one.[9][13] Humans show similar lateral specialized control of the immune system from the evidence of strokes,[14] surgery to control epilepsy,[15] and the application of TMS.[16]
Brainstem
The higher brain top down control of physiology is mediated by the sympathetic and parasympathetic nervous systems in the brainstem,[1][2][3][4] and the hypothalamus.[1][17][18] The sympathetic nervous system arises in brainstem nuclei that project down into intermediolateral columns of thoracolumbar spinal cord neurons in spinal segments T1–L2. The parasympathetic nervous system in the motor nuclei of cranial nerves III, VII, IX, (control over the pupil and salivary glands) and X (vagus –many functions including immunity) and sacral spinal segments (gastrointestinal and urogenital systems).[12] Another control occurs through top down control by the medial areas of the prefrontal cortex.[1][17][18] upon the hypothalamus which has a nonnerve control of the body through hormonal secretions of the pituitary.
Immunity
The brain controls immunity both indirectly through HPA glucocorticoid secretions from the pituitary, and by various direct innervations.[19]
- Antibodies. There is sympathetic innervation of the thymus gland.[20] Sympathetic control exists over antibody production,[21] and the modulation of cytokine concentrations.[22]
- Cellular immunity. An intact sympathetic nervous system is required to maintain full cellular immunoregulation as denervated mice do not produce and activate, for example, splenic suppressor T cells, or thymic NKT cells.[23]
- Organ inflammation. Sympathetic innervation of various organs[19] contacts macrophages and dendritic cells and can increase local inflammation including the kidney[24] gut,[25] the skin,[26] and the synovial joints[27]
- Antiinflammation. The vagus nerve carries a parasympathetic cholinergic antiinflammatory pathway that reduces proinflammatory cytokines such as TNF by spleen macrophages in the red pulp and the marginal zone and so the activation of inflammation.[28][29] This control is in part controlled by direct innervation of body organs such as the spleen.[30] However, the existence of the parasympathetic antiinflammatory nerve pathway is controversial with one reviewer stating: “there is no evidence for an anti-inflammatory role of the efferent vagus nerve that is independent of the sympathetic nervous system.”[31]
Metabolism
The liver receives both sympathetic and parasympathetic nervous system innervation.[32]
Other
Conditioning
The brains of animals can anticipatorily learn to control cell level physiology such as immunity through Pavlovian conditioning. In this conditioning, a neutral stimulus saccharin is paired in a drink with an agent, cyclophosphamide, that produces an unconditioned response (immunosuppression). After learning this pairing, the taste of saccharin by itself through neural top down control created immunosuppression, as a new conditioned response.[42] This work was originally done on rats, however, the same conditioning can also occur in humans.[43] The conditioned response happens in the brain with the ventromedial nucleus of the hypothalamus providing the output pathway to the immune system, the amygdala, the input of visceral information, and the insular cortex acquires and creates the conditioned response.[5] The production of different components of the immune system can be controlled as conditioned responses:
- Antibodies[43][44][45]
- IL-2[46][47]
- B, CD8+ T cells and CD4+ naive and memory T cells, and granulocytes.[48] Such conditioning in rats can last a year.[49]
Nonimmune functions can also be conditioned:
See also
References
- ^ a b c d Cerqueira, J. J., Almeida, O. F. Sousa, N. (2008) "The stressed prefrontal cortex. Left? Right!" Brain Behav Immun. 22: 630-638 PubMed
- ^ a b Critchley, H. D. (2005) "Neural mechanisms of autonomic, affective, and cognitive integration". J Comp Neurol. 493: 154-166 PubMed
- ^ a b Van Eden, C. G. Buijs, R. M. (2000) "Functional neuroanatomy of the prefrontal cortex: autonomic interactions". Prog Brain Res. 126: 49-62 PubMed
- ^ a b c Craig, A. D. (2005) "Forebrain emotional asymmetry: a neuroanatomical basis?" Trends Cogn Sci. 9: 566-571 PubMed
- ^ a b Pacheco-Lopez, G., Niemi, M. B., Kou, W., Harting, M., Fandrey, J. Schedlowski, M. (2005) "Neural substrates for behaviorally conditioned immunosuppression in the rat". J Neurosci. 25: 2330-2337 PubMed
- ^ Ramirez-Amaya, V., Alvarez-Borda, B., Ormsby, C. E., Martinez, R. D., Perez-Montfort, R. Bermudez-Rattoni, F. (1996) "Insular cortex lesions impair the acquisition of conditioned immunosuppression". Brain Behav Immun. 10: 103-114 PubMed
- ^ Ramirez-Amaya, V. Bermudez-Rattoni, F. (1999) "Conditioned enhancement of antibody production is disrupted by insular cortex and amygdala but not hippocampal lesions". Brain Behav Immun. 13: 46-60 PubMed
- ^ Ohira, H., Isowa, T., Nomura, M., Ichikawa, N., Kimura, K., Miyakoshi, M., Iidaka, T., Fukuyama, S., Nakajima, T. Yamada, J. (2008) "Imaging brain and immune association accompanying cognitive appraisal of an acute stressor". Neuroimage. 39: 500-514 PubMed
- ^ a b Vlajkovic, S., Nikolic, V., Nikolic, A., Milanovic, S. Jankovic, B. D. (1994) "Asymmetrical modulation of immune reactivity in left- and right-biased rats after ipsilateral ablation of the prefrontal, parietal and occipital brain neocortex". Int J Neurosci. 78: 123-134 PubMed
- ^ a b Pocai, A., Obici, S., Schwartz, G. J. Rossetti, L. (2005) "A brain-liver circuit regulates glucose homeostasis". Cell Metab. 1: 53-61 PubMed
- ^ Love, J. A., Yi, E. Smith, T. G. (2007) "Autonomic pathways regulating pancreatic exocrine secretion". Auton Neurosci. 133: 19-34 PubMed
- ^ a b Brading, A. (1999) The autonomic nervous system and its effectors. Oxford: Blackwell Science. ISBN 978-0-632-02624-1
- ^ Barneoud, P., Neveu, P. J., Vitiello, S., Mormede, P. Le Moal, M. (1988) "Brain neocortex immunomodulation in rats". Brain Res. 474: 394-398 PubMed
- ^ Koch, H. J., Uyanik, G., Bogdahn, U. Ickenstein, G. W. (2006) "Relation between laterality and immune response after acute cerebral ischemia". Neuroimmunomodulation. 13: 8-12 PubMed
- ^ Meador, K. J., Loring, D. W., Ray, P. G., Helman, S. W., Vazquez, B. R. Neveu, P. J. (2004) "Role of cerebral lateralization in control of immune processes in humans". Ann Neurol. 55: 840-844 PubMed
- ^ Clow, A., Lambert, S., Evans, P., Hucklebridge, F. Higuchi, K. (2003) "An investigation into asymmetrical cortical regulation of salivary S-IgA in conscious man using transcranial magnetic stimulation". Int J Psychophysiol. 47: 57-64 PubMed
- ^ a b Radley, J. J., Arias, C. M. Sawchenko, P. E. (2006) "Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress". J Neurosci. 26: 12967-12976 PubMed
- ^ a b Kern, S., Oakes, T. R., Stone, C. K., McAuliff, E. M., Kirschbaum, C. Davidson, R. J. (2008) "Glucose metabolic changes in the prefrontal cortex are associated with HPA axis response to a psychosocial stressor". Psychoneuroendocrinology. 33: 517-529 PubMed
- ^ a b Sternberg, E. M. (2006) "Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens". Nat Rev Immunol. 6: 318-328 PubMed
- ^ Trotter, R. N., Stornetta, R. L., Guyenet, P. G. Roberts, M. R. (2007) "Transneuronal mapping of the CNS network controlling sympathetic outflow to the rat thymus". Auton Neurosci. 131: 9-20 PubMed
- ^ Besedovsky, H. O., del Rey, A., Sorkin, E., Da Prada, M. Keller, H. H. (1979) "Immunoregulation mediated by the sympathetic nervous system". Cell Immunol. 48: 346-355 PubMed
- ^ Kin, N. W. Sanders, V. M. (2006) "It takes nerve to tell T and B cells what to do". J Leukoc Biol. 79: 1093-1104 PubMed
- ^ Li, X., Taylor, S., Zegarelli, B., Shen, S., O'Rourke, J. Cone, R. E. (2004) "The induction of splenic suppressor T cells through an immune-privileged site requires an intact sympathetic nervous system". J Neuroimmunol. 153: 40-49 PubMed
- ^ Veelken, R., Vogel, E. M., Hilgers, K., Amann, K., Hartner, A., Sass, G., Neuhuber, W. Tiegs, G. (2008) "Autonomic renal denervation ameliorates experimental glomerulonephritis". J Am Soc Nephrol. 19: 1371-1378 PubMed
- ^ Straub, R. H., Grum, F., Strauch, U., Capellino, S., Bataille, F., Bleich, A., Falk, W., Scholmerich, J. Obermeier, F. (2008) "Anti-inflammatory role of sympathetic nerves in chronic intestinal inflammation". Gut. 57: 911-921 PubMed
- ^ Pavlovic, S., Daniltchenko, M., Tobin, D. J., Hagen, E., Hunt, S. P., Klapp, B. F., Arck, P. C. Peters, E. M. (2008) "Further exploring the brain-skin connection: stress worsens dermatitis via substance P-dependent neurogenic inflammation in mice". J Invest Dermatol. 128: 434-446 PubMed
- ^ Miller, L. E., Justen, H. P., Scholmerich, J. Straub, R. H. (2000) "The loss of sympathetic nerve fibers in the synovial tissue of patients with rheumatoid arthritis is accompanied by increased norepinephrine release from synovial macrophages". Faseb J. 14: 2097-2107 PubMed
- ^ Huston, J. M., Ochani, M., Rosas-Ballina, M., Liao, H., Ochani, K., Pavlov, V. A., Gallowitsch-Puerta, M., Ashok, M., Czura, C. J., Foxwell, B., Tracey, K. J. Ulloa, L. (2006) "Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis". J Exp Med. 203: 1623-1628 PubMed
- ^ Rosas-Ballina, M., Ochani, M., Parrish, W. R., Ochani, K., Harris, Y. T., Huston, J. M., Chavan, S. Tracey, K. J. (2008) "Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia". Proc Natl Acad Sci U S A. 105: 11008-11013 PubMed
- ^ Exton, M. S., Schult, M., Donath, S., Strubel, T., Bode, U., del Rey, A., Westermann, J. Schedlowski, M. (1999) "Conditioned immunosuppression makes subtherapeutic cyclosporin effective via splenic innervation". Am J Physiol. 276: R1710-1717 PubMed
- ^ Nance, D. M. Sanders, V. M. (2007) "Autonomic innervation and regulation of the immune system (1987-2007)". Brain Behav Immun. 21: 736-745 PubMed p. 741
- ^ Uyama, N., Geerts, A. Reynaert, H. (2004) "Neural connections between the hypothalamus and the liver". Anat Rec A Discov Mol Cell Evol Biol. 280: 808-820 PubMed
- ^ Wang, P. Y., Caspi, L., Lam, C. K., Chari, M., Li, X., Light, P. E., Gutierrez-Juarez, R., Ang, M., Schwartz, G. J. Lam, T. K. (2008) "Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production". Nature. 452: 1012-1016 PubMed
- ^ a b Shimazu, T. (1981) "Central nervous system regulation of liver and adipose tissue metabolism". Diabetologia. 20 Suppl: 343-356 PubMed
- ^ Brunicardi, F. C., Shavelle, D. M. Andersen, D. K. (1995) "Neural regulation of the endocrine pancreas". Int J Pancreatol. 18: 177-195 PubMed
- ^ Klieverik LP, Janssen SF, van Riel A, Foppen E, Bisschop PH, Serlie MJ, Boelen A, Ackermans MT, Sauerwein HP, Fliers E, Kalsbeek A. (2009). Thyroid hormone modulates glucose production via a sympathetic pathway from the hypothalamic paraventricular nucleus to the liver. Proc Natl Acad Sci U S A. 106(14):5966-71.PubMed
- ^ Nakamura, K. Morrison, S. F. (2007) "Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue". Am J Physiol Regul Integr Comp Physiol. 292: R127-136 PubMed
- ^ Edwards, A. V. Jones, C. T. (1993) "Autonomic control of adrenal function". J Anat. 183 ( Pt 2): 291-307 PubMed
- ^ Engeland, W. C. (1998) "Functional innervation of the adrenal cortex by the splanchnic nerve". Horm Metab Res. 30: 311-314 PubMed
- ^ DiBona, G. F. (2000) "Neural control of the kidney: functionally specific renal sympathetic nerve fibers". Am J Physiol Regul Integr Comp Physiol. 279: R1517-1524 PubMed
- ^ Denton, K. M., Luff, S. E., Shweta, A. Anderson, W. P. (2004) "Differential neural control of glomerular ultrafiltration". Clin Exp Pharmacol Physiol. 31: 380-386 PubMed
- ^ Ader, R. Cohen, N. (1975) "Behaviorally conditioned immunosuppression". Psychosom Med. 37: 333-340 PubMed
- ^ a b Goebel, M. U., Trebst, A. E., Steiner, J., Xie, Y. F., Exton, M. S., Frede, S., Canbay, A. E., Michel, M. C., Heemann, U. Schedlowski, M. (2002) "Behavioral conditioning of immunosuppression is possible in humans". Faseb J. 16: 1869-1873 PubMed
- ^ Alvarez-Borda, B., Ramirez-Amaya, V., Perez-Montfort, R. Bermudez-Rattoni, F. (1995) "Enhancement of antibody production by a learning paradigm". Neurobiol Learn Mem. 64: 103-105 PubMed
- ^ Oberbeck, R., Kromm, A., Exton, M. S., Schade, U. Schedlowski, M. (2003) "Pavlovian conditioning of endotoxin-tolerance in rats". Brain Behav Immun. 17: 20-27 PubMed
- ^ Pacheco-Lopez, G., Niemi, M. B., Kou, W., Harting, M., Del Rey, A., Besedovsky, H. O. Schedlowski, M. (2004) "Behavioural endocrine immune-conditioned response is induced by taste and superantigen pairing". Neuroscience. 129: 555-562 PubMed
- ^ Exton, M. S., von Horsten, S., Schult, M., Voge, J., Strubel, T., Donath, S., Steinmuller, C., Seeliger, H., Nagel, E., Westermann, J. Schedlowski, M. (1998) "Behaviorally conditioned immunosuppression using cyclosporine A: central nervous system reduces IL-2 production via splenic innervation". J Neuroimmunol. 88: 182-191 PubMed
- ^ von Horsten, S., Exton, M. S., Schult, M., Nagel, E., Stalp, M., Schweitzer, G., Voge, J., del Rey, A., Schedlowski, M. Westermann, J. (1998) "Behaviorally conditioned effects of Cyclosporine A on the immune system of rats: specific alterations of blood leukocyte numbers and decrease of granulocyte function". J Neuroimmunol. 85: 193-201 PubMed
- ^ Exton, M. S., von Horsten, S., Strubel, T., Donath, S., Schedlowski, M. Westermann, J. (2000) "Conditioned alterations of specific blood leukocyte subsets are reconditionable". Neuroimmunomodulation. 7: 106-114 PubMed
- ^ Exton, M. S., Bull, D. F., King, M. G. Husband, A. J. (1995) "Behavioral conditioning of endotoxin-induced plasma iron alterations". Pharmacol Biochem Behav. 50: 675-679 PubMed
- ^ Irie, M., Asami, S., Nagata, S., Miyata, M. Kasai, H. (2000) "Classical conditioning of oxidative DNA damage in rats". Neurosci Lett. 288: 13-16 PubMed
- ^ Stockhorst, U., Steingruber, H. J. Scherbaum, W. A. (2000) "Classically conditioned responses following repeated insulin and glucose administration in humans". Behav Brain Res. 110: 143-159 PubMed
- ^ a b Stockhorst U, Mahl N, Krueger M, Huenig A, Schottenfeld-Naor Y, Huebinger A, Berresheim HW, Steingrueber HJ, Scherbaum WA. (2004) Classical conditioning and conditionability of insulin and glucose effects in healthy humans. Physiol Behav. 81:375-88.PubMed
- ^ Fehm-Wolfsdorf G, Gnadler M, Kern W, Klosterhalfen W, Kerner W. (1993) Classically conditioned changes of blood glucose level in humans. Physiol Behav. 54:155-60. PubMed