Nanorobotics

Part of a series of articles on

Molecular Nanotechnology

Mechanosynthesis
Molecular assembler
Molecular machine
Productive nanosystems
Nanorobotics
K. Eric Drexler
Engines of Creation

See also
Nanotechnology

Part of a series of articles on
Nanomedicine

Nanotoxicology
Nanosensor
Nanoshell
Nanorobotics

See also
Nanotechnology

Nanorobotics is the emerging technology field of creating machines or robots whose components are at or close to the scale of a nanometer (10−9 meters).[1][2][3] More specifically, nanorobotics refers to the nanotechnology engineering discipline of designing and building nanorobots, with devices ranging in size from 0.1-10 micrometers and constructed of nanoscale or molecular components.[4][5] The names nanobots, nanoids, nanites, nanomachines or nanomites have also been used to describe these devices currently under research and development.[6][7]

Nanomachines are largely in the research-and-development phase,[8] but some primitive molecular machines have been tested. An example is a sensor having a switch approximately 1.5 nanometers across, capable of counting specific molecules in a chemical sample. The first useful applications of nanomachines might be in medical technology,[9] which could be used to identify and destroy cancer cells.[10] [11] Another potential application is the detection of toxic chemicals, and the measurement of their concentrations, in the environment. Recently, Rice University has demonstrated a single-molecule car developed by a chemical process and including buckyballs for wheels. It is actuated by controlling the environmental temperature and by positioning a scanning tunneling microscope tip.

Another definition is a robot that allows precision interactions with nanoscale objects, or can manipulate with nanoscale resolution. Such devices are more related to Microscopy or Scanning probe microscopy, instead of the description of nanorobots as molecular machine. Following the microscopy definition even a large apparatus such as an atomic force microscope can be considered a nanorobotic instrument when configured to perform nanomanipulation. For this perspective, macroscale robots or microrobots that can move with nanoscale precision can also be considered nanorobots.

Contents

Nanorobotics theory

Since nanorobots would be microscopic in size, it would probably be necessary for very large numbers of them to work together to perform microscopic and macroscopic tasks. These nanorobot swarms, both those incapable of replication (as in utility fog) and those capable of unconstrained replication in the natural environment (as in grey goo and its less common variants), are found in many science fiction stories, such as the Borg nanoprobes in Star Trek and The Outer Limits episode The New Breed.

Some proponents of nanorobotics, in reaction to the grey goo scare scenarios that they earlier helped to propagate, hold the view that nanorobots capable of replication outside of a restricted factory environment do not form a necessary part of a purported productive nanotechnology, and that the process of self-replication, if it were ever to be developed, could be made inherently safe. They further assert that their current plans for developing and using molecular manufacturing do not in fact include free-foraging replicators.[12][13]

The most detailed theoretical discussion of nanorobotics, including specific design issues such as sensing, power communication, navigation, manipulation, locomotion, and onboard computation, has been presented in the medical context of nanomedicine by Robert Freitas. Some of these discussions remain at the level of unbuildable generality and do not approach the level of detailed engineering.

Approaches

Biochip

The joint use of nanoelectronics, photolithography, and new biomaterials provides a possible approach to manufacturing nanorobots for common medical applications, such as for surgical instrumentation, diagnosis and drug delivery.[14][15][16] This method for manufacturing on nanotechnology scale is currently in use in the electronics industry.[17] So, practical nanorobots should be integrated as nanoelectronics devices, which will allow tele-operation and advanced capabilities for medical instrumentation.[18][19]

Nubots

Nubot is an abbreviation for "nucleic acid robots". Nubots are synthetic robotics devices at the nanoscale. Representative nubots include the several DNA walkers reported by Nadrian Seeman's group at NYU, Niles Pierce's group at Caltech, John Reif's group at Duke University, Chengde Mao's group at Purdue, and Andrew Turberfield's group at the University of Oxford.

Positional nanoassembly

Nanofactory Collaboration,[20] founded by Robert Freitas and Ralph Merkle in 2000 and involving 23 researchers from 10 organizations and 4 countries, focuses on developing a practical research agenda[21] specifically aimed at developing positionally-controlled diamond mechanosynthesis and a diamondoid nanofactory that would have the capability of building diamondoid medical nanorobots.

Bacteria based

This approach proposes the use of biological microorganisms, like the bacterium Escherichia coli.[22] Thus the model uses a flagellum for propulsion purposes. The use of electromagnetic fields are normally applied to control the motion of this kind of biological integrated device.

Open technology

A document with a proposal on nanobiotech development using open technology approaches has been addressed to the United Nations General Assembly.[23] According to the document sent to the UN, in the same way that Open Source has in recent years accelerated the development of computer systems, a similar approach should benefit the society at large and accelerate nanorobotics development. The use of nanobiotechnology should be established as a human heritage for the coming generations, and developed as an open technology based on ethical practices for peaceful purposes. Open technology is stated as a fundamental key for such an aim.

Nanorobot Race

In the same ways that technology development had the space race and nuclear arms race, a race for nanorobots is occurring.[24][25][26][27] There is plenty of ground allowing nanorobots to be included among the emerging technologies.[28] Some of the reasons are that large corporations, such as General Electric, Hewlett-Packard and Northrop Grumman have been recently working in the development and research of nanorobots;[29][30] surgeons are getting involved and starting to propose ways to apply nanorobots for common medical procedures;[31] universities and research institutes were granted funds by government agencies exceeding $2 billion towards research developing nanodevices for medicine;[32][33] bankers are also strategically investing with the intent to acquire beforehand rights and royalties on future nanorobots commercialization.[34] Some aspects of nanorobot litigation and related issues linked to monopoly have already arisen.[35][36][37] A large number of patents has been granted recently on nanorobots, done mostly for patent agents, companies specialized solely on building patent portfolio, and lawyers. After a long series of patents and eventually litigations, see for example the Invention of Radio or about the War of Currents, emerging fields of technology tend to become a monopoly, which normally is dominated by large corporations.[38]

Potential applications

Nanomedicine

Potential applications for nanorobotics in medicine include early diagnosis and targeted drug-delivery for cancer,[39][40][41] biomedical instrumentation[42] surgery,[43][44] pharmacokinetics[45] monitoring of diabetes,[46][47][48] and health care.

In such plans, future medical nanotechnology is expected to employ nanorobots injected into the patient to perform work at a cellular level. Such nanorobots intended for use in medicine should be non-replicating, as replication would needlessly increase device complexity, reduce reliability, and interfere with the medical mission.

Drug Delivery

Nanotechnology provides a wide range of new technologies for developing customized solutions that optimize the delivery of pharmaceutical products.

Today, harmful side effects of treatments such as chemotherapy are commonly a result of drug delivery methods that don't pinpoint their intended target cells accurately. [49] Researchers at Harvard and MIT, however, have been able to attach special RNA strands, measuring nearly 10 nm in diameter, to nano-particles, filling them with a chemotherapy drug. These RNA strands are attracted to cancer cells. When the nanoparticle encounters a cancer cell, it adheres to it, and releases the drug into the cancer cell.[50] This directed method of drug delivery has great potential for treating cancer patients while avoiding negative effects (commonly associated with improper drug delivery).[51]

Another useful application of nanorobots is assisting in the repair of tissue cells alongside white blood cells.[52] The recruitment of inflammatory cells or white blood cells (which include neutrophils, lymphocytes, monocytes and mast cells) to the affected area is the first response of tissues to injury. [53] Because of their small size nanorobots could attach themselves to the surface of recruited white cells, to squeeze their way out through the walls of blood vessels and arrive at the injury site, where they can assist in the tissue repair process. Certain substances could possibly be utilized to accelerate the recovery.

The science behind this mechanism is quite complex. Passage of cells across the blood endothelium, a process known as transmigration, is a mechanism involving engagement of cell surface receptors to adhesion molecules, active force exertion and dilation of the vessel walls and physical deformation of the migrating cells. By attaching themselves to migrating inflammatory cells, the robots can in effect “hitch a ride” across the blood vessels, bypassing the need for a complex transmigration mechanism of their own.[54]

See also

References

  1. ^ Vaughn JR. (2006). "Over the Horizon: Potential Impact of Emerging Trends in Information and Communication Technology on Disability Policy and Practice". National Council on Disability, Washington DC.: 1–55. 
  2. ^ Ghosh, A., Fischer, P. (2009). "Controlled Propulsion of Artificial Magnetic Nanostructured Propellers". Nano Letters 9 (6): 2243–2245. doi:10.1021/nl900186w. PMID 19413293. 
  3. ^ Sierra, D. P., Weir, N. A., Jones, J. F. (2005). "A review of research in the field of nanorobotics". U.S. Department of Energy - Office of Scientific and Technical Information Oak Ridge, TN SAND2005-6808: 1–50. doi:10.2172/875622. 
  4. ^ Tarakanov, A. O., Goncharova, L. B., Tarakanov Y. A. (2009). "Carbon nanotubes towards medicinal biochips". Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2 (1): 1–10. doi:10.1002/wnan.69. 
  5. ^ Ignatyev, M. B. (2010). "Necessary and sufficient conditions of nanorobot synthesis". Doklady Mathematics 82 (1): 671–675. doi:10.1134/S1064562410040435. 
  6. ^ Cerofolini, G., Amato, P., Masserini, M., Mauri, G. (2010). "A Surveillance System for Early-Stage Diagnosis of Endogenous Diseases by Swarms of Nanobots". Advanced Science Letters 3 (4): 345–352. doi:10.1166/asl.2010.1138. 
  7. ^ Yarin, A. L. (2010). "Nanofibers, nanofluidics, nanoparticles and nanobots for drug and protein delivery systems". Scientia Pharmaceutica Central European Symposium on Pharmaceutical Technology 78 (3): 542. doi:10.3797/scipharm.cespt.8.L02. 
  8. ^ Wang, J. (2009). "Can Man-Made Nanomachines Compete with Nature Biomotors?". ACS Nano 3 (1): 4–9. doi:10.1021/nn800829k. PMID 19206241. 
  9. ^ Amrute-Nayak, M., Diensthuber, R. P., Steffen, W., Kathmann, D., Hartmann, F. K., Fedorov, R., Urbanke, C., Manstein, D. J., Brenner, B., Tsiavaliaris, G. (2010). "Targeted Optimization of a Protein Nanomachine for Operation in Biohybrid Devices". Angewandte Chemie 122 (2): 322–326. doi:10.1002/ange.200905200. 
  10. ^ Patel, G. M., Patel, G. C., Patel, R. B., Patel, J. K., Patel, M. (2010). "Nanorobot: A versatile tool in nanomedicine". Journal of Drug Targeting 14 (2): 63–67. doi:10.1080/10611860600612862. PMID 16608733. 
  11. ^ Wang, J. et al . (2011). "Micromachine Enables Capture and Isolation of Cancer Cells in Complex Media". Angew Chem. Int . Ed. 50: 4161–4165. doi:10.1002/anie.201100115. 
  12. ^ Zyvex: "Self replication and nanotechnology" "artificial self replicating systems will only function in carefully controlled artificial environments ... While self replicating systems are the key to low cost, there is no need (and little desire) to have such systems function in the outside world. Instead, in an artificial and controlled environment they can manufacture simpler and more rugged systems that can then be transferred to their final destination. ... The resulting medical device will be simpler, smaller, more efficient and more precisely designed for the task at hand than a device designed to perform the same function and self replicate. ... A single device able to do [both] would be harder to design and less efficient."
  13. ^ "Foresight Guidelines for Responsible Nanotechnology Development" "Autonomous self-replicating assemblers are not necessary to achieve significant manufacturing capabilities." "The simplest, most efficient, and safest approach to productive nanosystems is to make specialized nanoscale tools and put them together in factories big enough to make what is needed. ... The machines in this would work like the conveyor belts and assembly robots in a factory, doing similar jobs. If you pulled one of these machines out of the system, it would pose no risk, and be as inert as a light bulb pulled from its socket."
  14. ^ Fisher, B. (2008). "Biological Research in the Evolution of Cancer Surgery: A Personal Perspective". Cancer Research 68 (24): 10007–10020. doi:10.1158/0008-5472.CAN-08-0186. PMID 19074862. 
  15. ^ Cavalcanti, A., Shirinzadeh, B., Zhang, M. & Kretly, L.C. (2008). "Nanorobot Hardware Architecture for Medical Defense". Sensors 8 (5): 2932–2958. doi:10.3390/s8052932. 
  16. ^ Hill, C., Amodeo, A., Joseph, J.V. & Patel, H.R.H. (2008). "Nano- and microrobotics: how far is the reality?". Expert Review of Anticancer Therapy 8 (12): 1891–1897. doi:10.1586/14737140.8.12.1891. PMID 19046109. 
  17. ^ Cale, T.S., Lu, J.-Q. & Gutmann, R.J. (2008). "Three-dimensional integration in microelectronics: Motivation, processing, and thermomechanical modeling". Chemical Engineering Communications 195 (8): 847–888. doi:10.1080/00986440801930302. 
  18. ^ Couvreur, P. & Vauthier, C. (2006). "Nanotechnology: Intelligent Design to Treat Complex Disease". Pharmaceutical Research 23 (7): 1417–1450. doi:10.1007/s11095-006-0284-8. PMID 16779701. 
  19. ^ Elder, J.B., Hoh, D.J., Oh, B.C., Heller, A.C., Liu, C.Y. & Apuzzo, M.L. (2008). "The future of cerebral surgery: a kaleidoscope of opportunities". Neurosurgery 62 (6): 1555–1579. doi:10.1227/01.neu.0000333820.33143.0d. PMID 18695575. 
  20. ^ Nanofactory
  21. ^ Positional Diamondoid Molecular Manufacturing
  22. ^ Martel, S., Mohammadi, M., Felfoul, O., Lu, Z., Pouponneau P. & David H. (2009). "Flagellated Magnetotactic Bacteria as Controlled MRI-trackable Propulsion and Steering Systems for Medical Nanorobots Operating in the Human Microvasculature". International Journal of Robotics Research 28 (4): 571–582. doi:10.1177/0278364908100924. PMC 2772069. PMID 19890435. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2772069. 
  23. ^ Cavalcanti, A. (2009). "Nanorobot Invention and Linux: The Open Technology Factor - An Open Letter to UNO General Secretary" (PDF). CANNXS Project 1 (1): 1–4. http://www.cannxs.org/open.pdf. 
  24. ^ Hede, S., Huilgol, N. (2006). ""Nano": The new nemesis of cancer". Journal of Cancer Research and Therapeutics 2 (4): 186–195. doi:10.4103/0973-1482.29829. PMID 17998702. 
  25. ^ Das, S., Gates, A. J., Abdu, H. A., Rose, G. S., Picconatto, C. A., Ellenbogen, J. C. (2007). "Designs for Ultra-Tiny, Special-Purpose Nanoelectronic Circuits". IEEE Transactions on Circuits and Systems I: Regular Papers 54 (11): 2528–2540. doi:10.1109/TCSI.2007.907864. 
  26. ^ Solomon, N., Nanorobotics System, WIPO Patent WO/2008/063473, 2008.
  27. ^ Rosso, F., Barbarisi, M., Barbarisi, A. (2011). "Technology for Biotechnology". Biotechnology in Surgery: 61–73. doi:10.1007/978-88-470-1658-3_4. 
  28. ^ Challacombe, B., Althoefer, K., Stoianovici, D. (2010). "Emerging Robotics". New Technologies in Urology 7: 49–56. doi:10.1007/978-1-84882-178-1_7. 
  29. ^ Murday, J. S., Siegel, R. W., Stein, J., Wright, J. F. (2009). "Translational nanomedicine: status assessment and opportunities". Nanomedicine 5 (3): 251–273. doi:10.1016/j.nano.2009.06.001. PMID 19540359. 
  30. ^ Hogg, T. (2007). "Coordinating Microscopic Robots in Viscous Fluids". Autonomous Agents and Multi-Agent Systems 14 (3): 271–305. doi:10.1007/s10458-006-9004-3. 
  31. ^ Cuschieri, A. (2005). "Laparoscopic surgery: current status, issues and future developments". Surgeon 3 (3): 125–138. doi:10.1016/S1479-666X(05)80032-0. 
  32. ^ Roco, M. C. (2003). "Nanotechnology: convergence with modern biology and medicine". Current Opinion in Biotechnology 14 (3): 337–346. doi:10.1016/S0958-1669(03)00068-5. PMID 12849790. 
  33. ^ Scheufele, D. A., Lewenstein, B. V. (2005). "The Public and Nanotechnology: How Citizens Make Sense of Emerging Technologies". Journal of Nanoparticle Research 7 (6): 659–667. doi:10.1007/s11051-005-7526-2. 
  34. ^ Smith, D. M.; Goldstein, D. S.; Heideman, J. (2007). "Reverse Mergers and Nanotechnology". Nanotechnology Law & Business 4 (3). 
  35. ^ Morrison, S. (2008). "The Unmanned Voyage: An Examination of Nanorobotic Liability" (PDF). Albany Law Journal of Science & Technology 18 (229). http://www.albanylawjournal.org/articles/Morrison_0609.pdf. 
  36. ^ Craig Tyler, Patent Pirates Search For Texas Treasure, Texas Lawyer, September 20, 2004
  37. ^ Jaffe, A. B., Lerner, J. (2004). Innovation and Its Discontents: How Our Broken Patent System is Endangering Innovation and Progress, and What to Do About It. ISBN 069111725X. 
  38. ^ Gilbert, R. J., Newbery, D. M. G. (June 1982). "Preemptive Patenting and the Persistence of Monopoly". American Economic Review 72 (3): 514–526. JSTOR 1831552. 
  39. ^ Nanotechnology in Cancer
  40. ^ Cancer-fighting technology
  41. ^ LaVan DA, McGuire T, Langer R. (2003). "Small-scale systems for in vivo drug delivery". Nature Biotechnology 21 (10): 1184. doi:10.1038/nbt876. PMID 14520404. 
  42. ^ Medical Design Technology
  43. ^ Neurosurgery
  44. ^ Tiny robot useful for surgery
  45. ^ Drug Targeting
  46. ^ Nanorobots in Treatment of Diabetes
  47. ^ Nanorobotics for Diabetes
  48. ^ Wellness Engineering, Nanorobots, Diabetes
  49. ^ Debjit bhowmik, Chiranjib, R.Margret chandira B.Jayakar. Role of Nanotechnology in novel Drug Delivery system. Journal of Pharmaceutical Science and Technology Vol 1(1), 2009, 20-35. Print.
  50. ^ Bullis, Kevin. "Nano RNA Delivery." Technology Review Published by MIT. Apr 29. 2009. Retrieved Dec 27. 2011.
  51. ^ Debjit bhowmik, Chiranjib, R.Margret chandira B.Jayakar. "Role of Nanotechnology in novel Drug Delivery system." Journal of Pharmaceutical Science and Technology Vol 1(1), 2009, 20-35. Print.
  52. ^ Arancha Casal, Tad Hogg, Adriano Cavalcanti. "Nanorobots As Cellular Assistants in Inflammatory Responses." [1] 2004. Retrieved Dec 27. 2011.
  53. ^ C. Janeway, ed., ImmunoBiology, the Immune System in Health and Disease. Garland Pub; 5th ed., 2001. Retrieved Dec 27. 2011.
  54. ^ Arancha Casal, Tad Hogg, Adriano Cavalcanti. "Nanorobots As Cellular Assistants in Inflammatory Responses." [2] 2004. Retrieved Dec 27. 2011.

External links