In mathematics, mollifiers (also known as approximations to the identity) are smooth functions with special properties, used in distribution theory to create sequences of smooth functions approximating nonsmooth (generalized) functions, via convolution. Intuitively, given a function which is rather irregular, by convolving it with a mollifier the function gets "mollified", that is, its sharp features are smoothed, while still remaining close to the original nonsmooth function. They are also known as Friedrichs mollifiers after Kurt Otto Friedrichs, the mathematician who introduced them.
Contents |
Mollifiers were introduced by Kurt Otto Friedrichs in his paper Friedrichs 1944, pp. 136–139, which is a watershed in the modern theory of partial differential equations.[1] The name of the concept had a curious genesis:[1] at that time Friedrichs was a colleague of the mathematician Donald Alexander Flanders, and since he liked to consult colleagues about English usage, he asked Flanders how to name the smoothing operator he was about to introduce.[2] Flanders was a puritan so his friends nicknamed him Moll after Moll Flanders in recognition of his moral qualities, and he suggested to call the new mathematical concept a "mollifier" as a pun incorporating both Flanders' nickname and the verb 'to mollify', meaning 'to smooth over' in a figurative sense.
Sergei Sobolev had previously used mollifiers in his epoch making 1938 paper containing the proof of the Sobolev embedding theorem,[3] as Friedrichs himself later acknowledged.[4]
There is a little misunderstanding in the concept of mollifier: Friedrichs defined as "mollifier" the integral operator whose kernel is one of the functions nowadays called mollifiers. However, since the properties of an integral operator are completely determined by its kernel, the name mollfier was inherited by the kernel itself as a result of common usage.
smooth function on ℝn, n ≥ 1, satisfying the following three requirements
. If is awhere is the Dirac delta function and the limit must be understood in the space of Schwartz distributions, then is a mollifier. The function could satisfy also further conditions:[5] for example, if it satisfies
Note 1. When the theory of distributions was still not widely known nor used,[6] property (3) above was formulated by saying that the convolution of the function with a given function belonging to a proper Hilbert or Banach space converges as ε → 0 to this last one:[7] this is exactly what Friedrichs did.[8] This also clarifies why mollifiers are related to approximate identities.[9]
Note 2. As briefly pointed out in the "History" section of this entry, originally, the term "mollifier" identified the following convolution operator:[9][10]
where and is a smooth function satisfying the first three conditions stated above and one or more supplementary conditions as positivity and symmetry.
Consider the function of the variable ℝn defined by
It is easily seen that this function is infinitely differentiable, non analytic with vanishing derivative for . Divide this function by its integral over the whole space to get a function of integral one, which can be used as mollifier as described above: it is also easy to see that defines a positive and symmetric mollifier.[11]
All properties of a mollifier are related to its behaviour under the operation of convolution: we list the following ones, whose proofs can be found in every text on distribution theory.[12]
For any distribution , the following sequence of convolutions indexed by the real number
where denotes convolution, is a sequence of smooth functions.
For any distribution , the following sequence of convolutions indexed by the real number converges to
For any distribution ,
where indicates the support in the sense of distributions, and indicates their Minkowski addition.
The basic applications of mollifiers is to prove properties valid for smooth functions also in nonsmooth situations:
In some theories of generalized functions, mollifiers are used to define the multiplication of distributions: precisely, given two distributions and , the limit of the product of a smooth function and a distribution
defines (if it exists) their product in various theories of generalized functions.
Very informally, mollifiers are used to prove the identity of two different kind of extension of differential operators: the strong extension and the weak extension. The paper Friedrichs 1944 illustrates this concept quite well: however the high quantity of technical details needed to show what this really means prevent us from being formally detailed in this short description.
By convolution of the characteristic function of the unit ball with the smooth function (defined as in (3) with ), one obtains the function
which is a smooth function equal to on , with support contained in . This can be seen easily by observing that if and then . Hence for ,
It is easy to see how this construction can be generalized to obtain a smooth function identical to one on a neighbourhood of a given compact set, and equal to zero in every point whose distance from this set is greater than a given .[13] Such a function is called a (smooth) cutoff function: those functions are used to eliminate singularities of a given (generalized) function by multiplication. They leave unchanged the value of the (generalized) function they multiply only on a given set, thus modifying its support: also cutoff functions are the basic parts of smooth partitions of unity.