The name Milü (Chinese: 密率; pinyin: mì lǜ; literally "detailed (approximation) ratio"), also known as Zulü (Zu's ratio), is given to an approximation to π (Pi) found by Chinese mathematician and astronomer Zu Chongzhi. He computed π to be between 3.1415926 and 3.1415927 and gave two rational approximations of π, and , naming them respectively Yuelü 约率 (literally "approximate ratio") and Milü.
is by far the best rational approximation of π with a denominator of four digits or fewer, being accurate to 6 decimal places. It is within 0.000009% of the value of π, or in terms of common fractions overestimates π by less than . The next rational number (ordered by size of denominator) that is a better rational approximation of π is , still only correct to 6 decimal places. To be accurate to 7 decimal places, one needs to go as far as .
An easy mnemonic helps memorize this useful fraction by writing down each of the first three odd numbers twice: 1 1 3 3 5 5, then dividing the decimal number represented by the last 3 digits by the decimal number given by the first three digits.
Zu's contemporary calendarist and mathematician He Chengtian invented a fraction interpolation method called "harmonization of the divisor of the day" to obtain a closer approximation by iteratively adding the numerators and denominators of a "weak" fraction and a "strong" fraction.[1] Zu Chongzhi's approximation can be obtained with He's method[2]