The program MikroSim is an educational software for hardware-non-specific explanation of the general functioning and behaviour of a virtual processor, running on the operating system Microsoft Windows. With this e-learning tool, devices like miniaturized calculators, microcontroller, microprocessors, and computer can be explained didactically on own-developed instruction code on register transfer level, which are controlled by program sequences of micro instructions (microcode). Based on this, on higher level of abstraction it is possible to develop an instruction set being able to control a virtual application board.
Contents |
Initially, MikroSim was developed with the intention to be a processor simulation software, which is available manifold in educational areas. Since MikroSim operability starts on the basis of microcode development defined as a sequence of micro instructions (microcoding) for a virtual control unit, the software’s intention is on first approach a microcode simulator with various levels of abstractions including the ability of CPU simulators and instruction set emulators. In the current software revision, even a microcode controlled virtual application is feasible to operate on own coded instruction sets. With MikroSim typical and well known concepts in the area of computer engineering like computer architecture and instruction set architecture are unspecifically treated, which have been established since the early days of the information era and being still valid. In this fashion the simulation software gains a timeless, free didactical benefit without being restricted on special developments of the past and in the future. The detailed documentation and the bilingual application’s graphical user interface (GUI) in German and English, as well as the software’s upward compatibility given to some extend by MicroSoft’s operating system Windows, are reasons for being a well established valuable e-learning tool in field of computer engineering since 1992 for educational use.
The software bases on a revision written under Turbo-Pascal compiled for MS-DOS operating systems, which has been used for educational use in computer engineering and computer science at the Philipps-University Marburg (Germany) until 1992. The didactical concept has been picked up by Martin Perner during his study of physics (1990–1995) in summer 1992, revised and converted into a windows application compiled with Microsoft Visual Basic and running on Windows 3.1x. In doing so, at this time a simulator with huge conceptual improvements arose by exploiting the novel functionality and utilisation of Windows’ GUI for supporting the composition of microcode and the traceability of its instructional influence. The enhancements of the e-learning tool under Windows has been supported and promoted by the Fachbereich Mathematik/Informatik of the University of Marburg by Heinz-Peter Gumm until end 1995.
The Simulator has been awarded with the ‘’European Academic Software Award 1994’’ in the category computer science in Heidelberg (Germany) in November 1994. In March 1995 the simulator has been presented at the computer exhibition CeBIT’95 in Hannover at the stand of the ‘’Hessischen Hochschulen’’. Between 1995 until the year 2000 the simulator has been published as ‘’Mikrocodesimulator MikroSim 1.2’’ without any significant improvements. At this time the tool has been awarded by the European Union in the context of the ‘’European Year of Livelong Learning 1996’’ with 1000 ECU. In 1997, the software has been presented at the contest ‘’Multimedia Transfer’97’’ in connection to the exhibition ‘’LearnTec’97’’.[1] In its penultimate revision, the simulator has been published under ‘’Mikrocodesimulator MikroSim2000’’, optimized for Windows95’s 32-bit operation.
Between 2008 and 2009, the simulator concept has been revised, reworked, and thoughtful extended. So it has received wide ranging improvements and extensions without touching the successful conceptual aspects of the microcode simulation abilities in the core. For this purpose, advantage is taken of today’s computing system’s performance determined by operating system and underlying computational power to extend MikroSim’s simulation possibilities up to the stage of a virtual application board. Since January 2010, the simulator is distributed as ‘’Mikrocodesimulator MikroSim 2010’’ by 0/1-SimWare.
MikroSim is compiled and optimized for sake of unrestricted compatibility and for widest distribution possible for Windows XP as a 32-bit version. The program runs on all 32 - and 64-bit operating systems of the Windows Vista and Windows 7. Thereby, no special XP compatibility mode is needed.
The MikroSim can be used as freely distributable demo version with only few limitations in some in special functionalities negligible for private use and demonstration purpose. Most of the features are unlocked for private study and personal interests on crash course level. The demo version’s limitations concern educational aspects getting useful when using the tool extensively on long term. However, the software can be activated anonymously online without complicated registration process for a testing period of 10 days. For unlimited functionality, 0/1-SimWare offers several licensing models for single and multi user registration for private users, high schools, vocational schools, colleges, and universities. The training software is available as download under 'www.mikrocodesimulator.de'.
The windows application allows for the gradual establishment of a virtual application that is predetermined and such unchangeable in its functionality.
In exploration mode, the operating principle and control of newly added components influenced by one microcode instruction within a cycle can be evaluated. The width of MikroSim’s micro instructions is 49 bits. A single micro instruction is executed in three phases of a 3-phase clock. The partial phases are referred to as “GET”, “CALCULATE” and “PUT” phase, causing to fetch some register value, to execute a 32-bit calculation, and to store the calculation result into a CPU's internal register, finally.
In simulation mode, seamlessly executed micro instructions control the central processing unit of the simulator in subsequent cycles. Therefore, the intrinsic ability of one micro instruction is utilized to address the next micro instruction in the control store. The control store holding the micro instruction set (commonly referred as "microcode") comprises 1024 micro instructions words each 49-bit wide.
Using structuring opportunities of the control store for addressable scheduling of the microcode and the implementation of a cyclically operating machine code interpreter, that is programmed in microcode as well allows the implementation of individual micro-operation sequences, known as machine instructions. The microcode can be regarded as firmware for MikroSim, that can be modified, and stored in and reloaded from a microcode-ROM-file.
Within a micro instruction execution cycle, the CPU as well as an input / output controller is connected to an external 16 kByte huge random access memory device (RAM). Via the input-output controller device, communication with virtual input and output devices is supported by Direct Memory Access mode (DMA), Inter-Integrated Circuit Connection (I2C), and Interrupt request functionality (IRQ). A output port, a display, a timer, an event trigger, a digital-analog converter, a keyboard and data input / output channel is provided as virtual IC device for explaining didactically the communication with external devices.
The microcode simulator uses eight freely usable register each 32-bit wide connected with a 32-bit arithmetic logic unit (ALU). The register content can be regarded as signed or unsigned integer values, or as 32-bit floating point numbers. The register content can be easily viewed, interpreted, and modified bitwise an integrated system number editor.
The 32-bit ALU is the key unit of the central processing unit. It supports 128 different basic arithmetic operations for integer operation, interrupt control, and for floating point arithmetic.
The didactical approach to floating point calculations, which has been introduced in a comparable manner already in the early 1940s by Konrad Zuse, is introduced by using elemental sublevel operations for exponent and mantissa involved in the key operations of addition/subtraction and multiplication/division. A set of powerful 32-bit floating point arithmetic commands in mantissa and exponent for the basic operations and elementary analytical functions are provided, as they are realized in today’s mathematical coprocessors. Here, in the simulation with MikroSim it is ideally assumed that the execution of each supported ALU arithmetic operation requires only a distinct computing duration independent of circuit complexity realistically needed in practice.
The execution of micro instructions can be operated on various simulation levels with different temporal resolution:
With various additional options, visual CPU activities can be suppressed for the benefit of increasing the processing speed when the control of the application by machine programming is put forward. The performance index monitor provided with the simulator enables the user to benchmark the processing performance of MikroSim and setting it into relation with computing power of the simulator’s hardware, measurable in floating-point operations per second (FLOPS) and instructions per second (IPS).
With the so-called ’’Basic Assembler Tool for MikroSim’’ MikroBAT, simple programs can be developed in assembler programming language. Here, all supported mnemonics of the assembler programming language are determined by the user’s self created machine’s instruction set on micro instruction level. The add-on tool is able to translate the assembly language program into machine code and data and transferring the binary code into the external RAM for subsequent simulations. Together with MikroBAT the microcode simulator MikroSim supports the didactical introduction of teaching aspects in technical computer science from a switch-controlled calculating machine to an assembler programmable application.