Microsporidia | |
---|---|
Sporoblast of Fibrillanosema crangonycis |
|
Scientific classification | |
Kingdom: | Fungi |
Division: | Microsporidia |
Classes and orders (see below) | |
|
The microsporidia constitute a phylum of spore-forming unicellular parasites. They were once thought to be protists but are now known to be fungi. Loosely 1500 of the probably more than one million species are named now. Microsporidia are restricted to animal hosts, and all major groups of animals host microsporidia. Most infect insects, but they are also responsible for common diseases of crustaceans and fish. The distinguished species of microsporidia usually infect one specific host or a related group of hosts. Several species, most of which are opportunistic, also infect humans.
Approximately 10 percent of the species are parasites of vertebrates, including in humans.
After infection they influence their hosts in various ways and all organs and tissues are invaded. Some species are lethal, and a few are used in biological control of insect pests. Parasitic castration, gigantism, change of host sex are effects of microsporidian parasitism. In the most advanced cases of parasitism the microsporidium rules the host cell completely and controls its metabolism and reproduction, forming a xenoma. [1].
Replication takes place within the host's cells, which are infected by means of unicellular spores. These vary from 1-40 μm, making them some of the smallest eukaryotes. They also have the smallest eukaryotic genomes.
Microsporidium was once the vernacular name for a member of the class Microsporidea in the protozoan subphylum Cnidospora.[2]
Contents |
Microsporidia lack mitochondria and possess, instead, mitosomes. They also lack motile structures such as flagella.
Microsporidia produce highly resistant spores to survive outside the host for up to several years. Spore morphology is useful in distinguishing between different species. Spores of most species are oval or pyriform, but rod-shaped or spherical spores are not unusual. A few genera produce spores of unique shape for the genus.
The spore is protected by a wall, consisting of three layers:
In most cases there are two closely associated nuclei, forming a diplokaryon, but sometimes there is only one.
The anterior half of the spore contains a harpoon-like apparatus with a long thread-like polar filament, which is coiled up in the posterior half of the spore. The anterior part of the polar filament is surrounded by a polaroplast, a lamella of membranes. Behind the polar filament there is a posterior vacuole.[1]
In the gut of the host the spore germinates. It builds up osmotic pressure until its rigid wall ruptures at its thinnest point at the apex. The posterior vacuole swells, forcing the polar filament to rapidly eject the infectious content into the cytoplasm of the potential host. Simultaneously the material of the filament is rearranged to form a tube which functions as a hypodermic needle and penetrates the gut epithelium.
Once inside the host cell, a sporoplasm grows, dividing or forming a multinucleate plasmodium, before producing new spores. The life cycle varies considerably. Some have a simple asexual life cycle,[3] while others have a complex life cycle involving multiple hosts and both asexual and sexual reproduction. Different types of spores may be produced at different stages, probably with different functions including autoinfection (transmission within a single host).
The microsporidia often cause chronic, debilitating diseases rather than lethal infections. Effects on the host include reduced longevity, fertility, weight, and general vigor. Vertical transmission of microsporidia is frequently reported. In the case of insect hosts, vertical transmission often occurs as transovarial transmission, where the microsporidian parasites pass from the ovaries of the female host into eggs and eventually multiply in the infected larvae. Amblyospora salinaria n. sp. which infects the mosquito Culex salinarius Coquillett, and Amblyospora californica which infects the mosquito Culex tarsalis Coquillett, provide typical examples of transovarial transmission of microsporidia.[4][5][6][7]
Microsporidia, specifically the mosquito-infecting Vavraia culicis, are being explored as a possible 'evolution-proof' malaria-control method.[8] Microsporidian infection of Anopheles gambiae (the principal vector of Plasmodium falciparum malaria) reduces malarial infection within the mosquito, and shortens the mosquito lifespan.[9] As the majority of malaria-infected mosquitoes naturally die before the malaria parasite is mature enough to transmit, any increase in mosquito mortality through microsporidian-infection may reduce malaria transmission to humans.
For some time microsporidia were considered as very primitive eukaryotes, especially because of the lack of mitochondria, and placed along with the other Protozoa such as diplomonads, parabasalia and archamoebae in the protist-group Archezoa. More recent research has falsified this theory of early origin (for all of these). Yet microsporidia are proposed to be highly developed and specialized organisms, which just dispensed functions that are needed no longer, because they are supplied by the host.[10] Furthermore, spore-forming organisms in general do have a complex system of reproduction, both sexual and asexual, which look far from primitive.
Nowadays microsporidia are placed within the Fungi or as a sister-group of the Fungi with a common ancestor.[11][12][13][14]
Forming of clades is largely based on habitat and host. Three classes of Microsporidia are proposed by Vossbrinck and Debrunner-Vossbrinck, based on the habitat: Aquasporidia, Marinosporidia and Terresporidia.[15]
One classification could be:
|
|