Micro Channel architecture | |
32-bit Graphics Card IBM XGA-2 |
|
Year created | 1987 |
---|---|
Created by | IBM |
Supersedes | ISA |
Superseded by | PCI (1993) |
Width in bits | 16 or 32 |
Capacity | 10 MHz |
Style | Parallel |
Hotplugging interface | no |
External interface | no |
Micro Channel Architecture (MCA) was a proprietary 16- or 32-bit parallel computer bus introduced by IBM in 1987 which was used on PS/2 and other computers through the mid 1990s.
Contents |
The development of Micro Channel was driven by both technical and business pressures.
The IBM AT bus, which later became known as the Industry Standard Architecture (ISA) bus had a number of technical design limitations, including:
In addition, it suffered from other problems:
These limitations became more serious as the range of tasks and peripherals, and the number of manufacturers for IBM PC-compatibles, grew. IBM was already investigating the use of RISC processors in desktop machines, and could, in theory, save considerable money if a single well-documented bus could be used across their entire computer lineup.
It was thought that by creating a new standard, IBM would regain control of standards via the required licencing. As patents can take three years or more to be granted, however, only those relating to ISA could be licensed when MCA was announced. Patents on important Micro Channel features, such as Plug and Play automatic configuration, were not granted to IBM until after PCI had replaced MCA in the marketplace.
The IBM Micro Channel architecture was designed by engineer Chet Heath.[2][3]
MCA was primarily a 32-bit bus, but the system also supported a 16-bit mode designed to lower the cost of connectors and logic in Intel-based machines like the IBM PS/2.
The situation was never that simple, however, as both the 32-bit and 16-bit versions initially had a number of additional optional connectors for memory cards which resulted in a huge number of physically incompatible cards for bus attached memory. In time, memory moved to the CPU's local bus, thereby eliminating the problem. On the upside, signal quality was greatly improved as MCA added ground and power pins and arranged the pins to minimize interference; a ground or a supply was thereby located within 3 pins of every signal.
Another connector extension was included for graphics cards. This extension was used for analog output from the video card, which was then routed through the system board to the system's own monitor output. The advantage of this was that Micro Channel system boards could have a basic VGA or MCGA graphics system on board, and higher level graphics (XGA or other accelerator cards) could then share the same port. The add-on cards were then able to be free of 'legacy' VGA modes, leveraging the on-board graphics system when needed, and allowing a single system board connector for graphics that could be upgraded.
MCA cards also featured a unique, 16-bit software-readable ID, which formed the basis of an early plug and play system. The BIOS and/or OS can read IDs, compare against a list of known cards, and perform automatic system configuration to suit. This led to boot failures whereby an older BIOS would not recognize a newer card, causing an error at startup. In turn, this required IBM to release updated Reference Disks (The CMOS Setup Utility) on a regular basis. A fairly complete list of known IDs is available (see External links section). To accompany these reference disks were ADF files which were read by the CMOS which in turn provided configuration information for the Card. The ADF was a simple text file, containing information about the card's Memory addressing and Interrupts.
The basic data rate of MCA was increased from ISA's 8 MHz to 10 MHz. This may have been a modest increase in terms of clock rate, but the greater bus width, coupled with a dedicated bus controller that utilized burst mode transfers, meant that effective throughput was up to five times faster than ISA. For faster transfers the address bus could be reused for data, further increasing the effective width of the bus. Around 40 MB/s of throughput was observed (the theoretical maximum for MCA was 66 MB/s), although some higher throughput functions of the Microchannel bus were not initially supported on cards operating on an Intel platform.[4]
With bus mastering, each card could talk to another directly. This allowed performance that was independent of the CPU. One potential drawback of multi-master design was the possible collisions when more than one card would try to bus master, but MCA included an arbitration feature to correct for these situations, and also allowed a master to use a burst-mode. MCA cards had complete control for up to 12 milliseconds. This was long enough to permit the maximum number of other devices on the bus to buffer inbound data from over-runnable devices like tape and communications.
Multiple bus-master support and improved arbitration means that several such devices could coexist and share the system bus. MCA bus-master-capable devices can even use the bus to talk directly to each other (peer to peer) at speeds faster than the system CPU, without any other system intervention. In theory, MCA systems could be expanded, like mainframes, with only the addition of intelligent masters, without periodic need to upgrade the central processor.
Arbitration enhancement ensures better system throughput, since control is passed more efficiently. Advanced interrupt handling refers to the use of level sensitive interrupts to handle system requests. Rather than a dedicated interrupt line, several lines can be shared to provide more possible interrupts, addressing the ISA-bus interrupt line conflict problems.
All interrupt request signals were "public" on MCA permitting any card on the bus to function as an I/O processor for direct service of I/O device interrupts. ISA had limited all such processing to just the system's CPU. Likewise, bus master request and grant signals were public, such that bus attached devices could monitor latency to control internal buffering for I/O processors. These features were not adopted for PCI, requiring all I/O support to come uniquely from the system board processor.
The final major MCA improvement was POS, the Programmable Option Select, which allowed all setup to take place in software. This feature is taken for granted now, but at the time setup was a huge chore for ISA systems. POS was a simple system that included device IDs in firmware, which the drivers in the computer were supposed to interpret. This software-configuration is known as plug-and-play today.
Micro Channel architecture was first introduced at the launch of the PS/2 range in 1987, with three out of the four of the new machines featuring it.[5] Its use in IBM spread to the RS/6000, AS/400, and eventually to the IBM 9370 systemes - smallest members of the System/370 range.[6][7]
NCR Corporation adopted MCA comprehensively - they designed and built high-performance personal computer, workstation and server platforms supporting MCA, including their own MCA-based logic componentry, including SCSI, graphics, networking, and audio. A small number of other manufacturers, including Apricot, Dell, Tandy, Research Machines and Olivetti adopted it, but only for part of their PC range.
It soon became clear that although MCA was a huge technical improvement over ISA its introduction and marketing by IBM was poorly handled. IBM had patents on MCA system features and required MCA system manufacturers to pay a licence fee - and actively pursued patents to block third parties from selling unlicensed implementations of it. The PC clone market did not want to pay royalties to IBM in order to use this new technology, and for desktop machines vendors of PC-compatibles stayed largely with the 16-bit AT bus, (embraced and renamed as ISA to avoid IBM's "AT" trademark) and manual configuration, although the VESA Local Bus was briefly popular for Intel '486 machines.
For servers the technical limitations of the old ISA were too great, and in late 1988 the "Gang of Nine", led by Compaq, announced a rival high performance bus - Extended Industry Standard Architecture (EISA). This offered similar performance benefits to Micro Channel, but with twin advantage of being able to accept older ISA boards, and being free from IBM's control.
For several years EISA and MCA battled it out in the server arena, but in 1996 IBM effectively conceded defeat when they themselves produced some EISA bus servers.[8]
Within a few years of its arrival in 1992, PCI had largely superseded Micro Channel, EISA and VESA.
Expansion cards for the Micro Channel bus typically targeted high-end graphic workstation or server requirements, with SCSI, Ethernet, 5250 and 3270 connections.
Very few MCA sound cards were ever produced. Some examples include:
|