Maser

A maser is a device that produces coherent electromagnetic waves through amplification by stimulated emission. Historically, “maser” derives from the original, upper-case acronym MASER, which stands for "Microwave Amplification by Stimulated Emission of Radiation". The lower-case usage arose from technological development having rendered the original denotation imprecise, because contemporary masers emit EM waves (microwave and radio frequencies) across a broader band of the electromagnetic spectrum; thus, the physicist Charles H. Townes’s suggested usage of “molecular” replacing “microwave”, for contemporary linguistic accuracy.[1] In 1957, when the optical coherent oscillator was first developed, it was denominated optical maser, but usually called laser (Light Amplification by Stimulated Emission of Radiation), the acronym Gordon Gould established in 1957.

Contents

History

Theoretically, the principle of the maser was described by Nikolay Basov and Alexander Prokhorov from Lebedev Institute of Physics at an All-Union Conference on Radio-Spectroscopy held by USSR Academy of Sciences in May 1952.

The results were subsequently published in October 1954. A precursor of the maser was the first show boosted hydrogen device built and tested by physicists Theodor V. Ionescu and Vasile Mihu in 1946. Independently, Charles H. Townes, J. P. Gordon, and H. J. Zeiger built the first ammonia maser at Columbia University in 1953. The device used stimulated emission in a stream of energized ammonia molecules to produce amplification of microwaves at a frequency of 24 gigahertz.

Townes later worked with Arthur L. Schawlow to describe the principle of the optical maser, or laser, which Theodore H. Maiman first demonstrated in 1960. For their research in this field Townes, Basov, and Prokhorov were awarded the Nobel Prize in Physics in 1964.

Technology

The maser is based on the principle of stimulated emission proposed by Albert Einstein in 1917. When atoms have been put into an excited energy state, they can amplify radiation at the proper frequency. By putting such an amplifying medium in a resonant cavity, feedback is created that can produce coherent radiation.

Some common types of masers

The dual noble gas maser is an example of a masing medium which is nonpolar.[2]

Uses

Masers serve as high precision frequency references. These "atomic frequency standards" are one of the many forms of atomic clocks. They are also used as electronic amplifiers in radio telescopes. Masers are being developed as directed-energy weapons.

Hydrogen maser

Today, the most important type of maser is the hydrogen maser which is currently used as an atomic frequency standard. Together with other types of atomic clocks, they constitute the "Temps Atomique International" or TAI. This is the international time scale, which is coordinated by the Bureau International des Poids et Mesures, or BIPM.

It was Norman Ramsey and his colleagues who first realized this device. Today's masers are identical to the original design. The maser oscillation relies on stimulated emission between two hyperfine levels of atomic hydrogen. Here is a brief description of how it works:

Astrophysical masers

Maser-like stimulated emission also occurs in nature in interstellar space, and is frequently called superradiant emission to distinguish it from laboratory masers. Such emission is observed from molecules such as water (H2O), hydroxyl radicals (OH), methanol (CH3OH), formaldehyde (CH2O), and silicon monoxide (SiO). Water molecules in star-forming regions can undergo a population inversion and emit radiation at 22 GHz, creating the brightest spectral line in the radio universe. Some water masers also emit radiation from a vibrational mode at 96 GHz.

Extremely powerful masers, associated with active galactic nuclei, are known as megamasers and are up to a million times more powerful than stellar masers.

Terminology

The meaning of the term maser has changed slightly since its introduction. Initially the acronym was universally given as "microwave amplification by stimulated emission of radiation," which described devices which emitted in the microwave region of the electromagnetic spectrum.

The principle and concept of stimulated emission has since been extended to more devices and frequencies. Thus the original acronym is sometimes modified, as suggested by Charles H. Townes,[1] to "molecular amplification by stimulated emission of radiation." Some have asserted that Townes's efforts to extend the acronym in this way were primarily motivated by the desire to increase the importance of his invention, and his reputation in the scientific community.[3]

When the laser was developed, Townes and Schawlow and their colleagues at Bell Labs pushed the use of the term optical maser, but this was largely abandoned in favor of laser, coined by their rival Gordon Gould.[4] In modern usage, devices that emit in the X-ray through infrared portions of the spectrum are typically called lasers, and devices that emit in the microwave region and below are commonly called masers, regardless of whether they emit microwaves or other frequencies.

Gould originally proposed distinct names for devices that emit in each portion of the spectrum, including grasers (gamma ray lasers), xasers (x-ray lasers), uvasers (ultraviolet lasers), lasers (visible lasers), irasers (infrared lasers), masers (microwave masers), and rasers (RF masers). Most of these terms never caught on, however, and all have now become (apart from in science fiction) obsolete except for maser and laser.

See also

References

  1. ^ a b Charles H. Townes – Nobel Lecture
  2. ^ The Dual Noble Gas Maser, Harvard University, Department of Physics
  3. ^ Taylor, Nick (2000). LASER: The inventor, the Nobel laureate, and the thirty-year patent war. New York: Simon & Schuster. ISBN 0-684-83515-0. 
  4. ^ Taylor, Nick (2000). LASER: The inventor, the Nobel laureate, and the thirty-year patent war. New York: Simon & Schuster. pp. 66–70. ISBN 0-684-83515-0. 

Further reading

External links