Marine Biological Laboratory

Marine Biological Laboratory

Established 1888 (1888)
Research Type Pure and applied research
Field of Research biology, sensory physiology, ecology, infectious disease, marine biotechnology, aquaculture
Director Gary G. Borisy
Chief Academic & Scientific Officer Joshua Hamilton
Address 7 MBL Street
Location Woods Hole, Massachusetts,
United States
Zipcode 02543-1015
Telephone +1 (508) 289-7423
Nickname MBL
Nobel Laureates 54[1]
Website www.mbl.edu

The Marine Biological Laboratory (MBL) is an international center for research and education in biology, biomedicine and ecology. Founded in 1888, the MBL is the oldest independent marine laboratory in the Americas, taking advantage of a coastal setting in the Cape Cod village of Woods Hole, Massachusetts. As of 2009, 54 MBL-affiliated scientists have been awarded the Nobel Prize.[1]

Contents

Introduction

The MBL has three main research centers: the Ecosystems Center; the Bay Paul Center for Comparative Molecular Biology and Evolution; and the Whitman Center for Research and Discovery.

Each year, hundreds of scientists from around the world come to the MBL to conduct research. Often, they form collaborations at the MBL that continue throughout their professional lifetimes. Serendipitous encounters at the MBL have historically led to leaps in scientific understanding. One example is the meeting of Franklin Stahl and Matthew Meselson at the MBL in the summer of 1954, when they conceived their crucial experiment to demonstrate the semi-conservative replication of DNA (Holmes, 2001: 60-70).

During the summer, young scientists come to the MBL to attend the laboratory's famous graduate-level courses. Some of these courses, such Physiology, Embryology, and Neural Systems and Behavior (formerly called Invertebrate Zoology), have continued to evolve over more than a century.

The MBL and Brown University share a research and educational affiliation, The Brown-MBL Partnership, which includes a Ph.D.-awarding Graduate Program in Biological and Environmental Sciences. Other MBL programs train postgraduates, undergraduates, science teachers, historians, and science journalists. Throughout the year, the MBL is the site for research and planning conferences organized by professional scientific groups.

The MBL shares a library, the MBLWHOI Library, with Woods Hole Oceanographic Institution. The MBLWHOI Library holds print and electronic collections in the biological, biomedical, ecological, and oceanographic sciences, and houses a growing archival collection, including photograph and videos from the MBL's 120-year history. The library also conducts digitization and informatics projects.

The many opportunities for recreation in Woods Hole are an important part of the social fabric of the MBL. Over the decades, hundreds of scientists have relaxed at MBL's Stony Beach; enjoyed oceanside bike and walking trails; and met for conversation and rejuvenation at The Captain Kidd bar and restaurant.

In 2008,the institution began a campaign to obtain money to expand its year-round permanent programs.[2]

The MBL is a private, nonprofit corporation. Its director and chief executive officer is Gary G. Borisy, a Ph.D. cell biologist known for his discovery of the protein tubulin.

History

The Marine Biological Laboratory grew from the vision of several Bostonians and Spencer Fullerton Baird, the country's first Fish Commissioner. Baird had set up a United States Fish Commission research station in Woods Hole in 1882, and had ambitions to expand it into a major laboratory. He invited Alpheus Hyatt to move his marine biology laboratory and school which he had founded at the Norwood-Hyatt House in Annisquam, Massachusetts to Woods Hole. Inspired by Harvard biologist Louis Agassiz's short-lived summer school of natural history on Penikese Island, off the coast of Woods Hole, Hyatt accepted the offer. With $10,000 raised by the Woman's Education Association of Boston and the Boston Society of Natural History, land was purchased, a building was erected, and the MBL was incorporated with Hyatt as the first president of the board of trustees. The Fish Commission supplied crucial support, including marine organisms and running sea water (Maienschein, 1989).

Charles Otis Whitman, an embryologist, was retained as the first director of the MBL. Whitman, who believed “other things being equal, the investigator is always the best instructor,” emphasized the need to combine research and education at the new laboratory. The MBL's first summer course provided a six-week introduction to invertebrate zoology; facilities for visiting summer investigators were also offered (Marine Biological Laboratory, 1888).

The MBL Library was established in 1889, with scientist and future MBL trustee Cornelia Clapp serving as librarian. In 1899, the MBL began publishing The Biological Bulletin, a scientific journal that is still edited at the MBL (Maienschein, 1989).

Research

Cell, developmental, and reproductive biology

Cell, developmental, and reproductive biology have been a central part of the MBL's programs since the 1890s. Important discoveries in these fields at the MBL reach back to 1899, when Jacques Loeb demonstrated artificial parthenogenesis in sea urchin eggs; to 1905, when Edwin Grant Conklin first identified egg cytoplasmic regions that are programmed to form certain tissues or organs; to 1916, when Frank Rattray Lillie identified circulating hormones that influence sexual differentiation (Lillie, 1944). In the MBL's first two decades, cytologists Edmund Beecher Wilson, Nettie Stevens and others made connections between the chromosomes and Mendelian heredity, while Wilson's colleague at both the MBL and Columbia University, Thomas Hunt Morgan, launched the field of experimental genetics (Pauly, 2000:158). Keith R. Porter, considered by many to be a founder of modern cell biology due to his pioneering work on the fine structure of cells, including the discovery of microtubules, carried out research at the MBL starting in 1937 and directed the laboratory from 1975-77 (Barlow et al., 1993: 95-115).

The MBL has long been a center for the world's experts in cell division. Resident Distinguished Scientist Shinya Inoué's innovations in polarized light microscopy and video imaging since the 1950s have been instrumental in clarifying the cellular events of mitosis, including his discovery of the spindle fibers. In the early 1980s, Tim Hunt, Joan Ruderman and others at the MBL identified the first of a class of proteins that regulate the cycle of cell division (cyclin). Hunt was awarded a Nobel Prize in 2001 for this work (Hunt, 2004). In 1984, Ron Vale and others discovered kinesin, a motor protein involved in mitosis and other cellular processes, during summer MBL research. In 1991 Israeli scientist Avram Hershko began coming to the MBL to study the role that the protein ubiquitin plays in cell division. In 2004, Hershko won a Nobel Prize for his work to establish the basic mechanism of ubiquitin-mediated protein degradation.

The MBL is also a proving ground for new technologies in microscopy and imaging. The availability of cutting-edge imaging instrumentation in the MBL's discovery-based courses puts faculty and students at the forefront of experimentation. Osamu Shimomura, an MBL senior scientist from 1982-2001, was awarded the 2008 Nobel Prize in Chemistry for his discovery of green fluorescent protein (GFP), which led to the development of revolutionary techniques for imaging live cells and their components.

A large portion of the leading developmental biologists in the United States, both historically and today, have participated in the MBL's Embryology Course as directors, lecturers or students. One draw is the Woods Hole location and the availability of marine organisms, particularly the sea urchin, that are ideal for embryological analysis because they shed nearly transparent eggs which are fertilized and develop externally. In the first decades after the course was founded in 1893, its faculty pioneered research directions that remain central today, including the study of cytoplasmic localization in eggs; embryonic cell lineage (important in modern stem cell research); and evolutionary developmental biology (today called ‘evo devo'). Some of the distinguished embryologists who have directed the course are Charles Otis Whitman (1893-1895); Frank Rattray Lillie (1896-1903); Viktor Hamburger (1942-45); James Ebert (1962-66); Eric H. Davidson (1972-74; 1988-96); and Rudolf Raff (1980-82) (see Davidson, 1993). Developmental biologist Eric Wieschaus, recipient of a Nobel Prize in 1995, teaches regularly in the MBL Embryology Course. Currently co-directed by Lee Niswander and Nipam H. Patel, the course continues to be a premier training ground for developmental biologists.

Regenerative biology and medicine

In 2010, the MBL established the Eugene Bell Center for Regenerative Biology and Tissue Engineering, where researchers study the ability of marine and other animals to spontaneously regenerate damaged or aging body parts. An understanding of tissue and organ regeneration in lower animals holds promise for translation to treatments for human conditions, including spinal cord injury, diabetes, organ failure, and degenerative neural diseases such as Alzheimer's. A cornerstone of the Bell Center is a national resource for research on the frog, Xenopus, which is a major animal model used in U.S. biomedical research. The National Xenopus Resource at the MBL is funded by the National Institutes of Health.

Neuroscience, neurobiology, and sensory physiology

The MBL's contributions to neuroscience and sensory physiology also are significant, fostered today by its Neuroscience Institute with more than 100 participating summer researchers. The MBL has been a magnet for the discipline since L.W. Williams in 1910 discovered, and John Zachary Young in 1936 rediscovered, the squid giant axon, a nerve fiber that is 20 times larger in diameter than the largest human axon. Young brought this locally abundant, ideal experimental system to the attention of his MBL colleague K.S. Cole, who in 1938 used it to record the resistance changes underlying the action potential, which provided evidence that ions flowing across the axonal membrane generate this electrical impulse. In 1938, Alan Lloyd Hodgkin came to the MBL to learn about the squid giant axon from Cole. After World War II, Hodgkin and Andrew Huxley, working in Plymouth, England and using the voltage clamp technique developed by Cole, laid the basis for the modern understanding of electrical activity in the nervous system by measuring quantitatively the flow of ions across the axonal membrane. Hodgkin and Huxley received the Nobel Prize in 1963 for their description of the ionic basis of nerve conduction (Barlow et al., 1993: 151-172). Following on Hodgkin and Huxley's work, in the 1960s and 1970s Clay Armstrong and other MBL researchers described a number of the properties of the ion channels that allow sodium and potassium ions to carry electrical current across the cell membrane and Rodolfo Llinas described the transmission properties at the squid giant synapse (Llinas 1999). The “scientific career” of the “Woods Hole squid,” Loligo pealeii, is still going strong today, with studies on axonal transport, the squid giant synapse, and squid genomics.

Other marine organisms draw neuroscientists and neurobiologists to the MBL each summer, where a history of research into sensory physiology and behavior has been established. Haldan Keffer Hartline, an MBL summer investigator in the 1920s and early 1930s, uncovered several basic mechanisms of photoreceptor function through his studies on the horseshoe crab. Hartline shared the 1967 Nobel Prize with summer MBL colleague George Wald, who described the molecular basis of photoreception by showing that the light-sensitive visual pigment molecules consist of a slightly modified form of vitamin A coupled to a protein. Another long-term summer investigator, Stephen W. Kuffler, is credited with “founding” the science of neurobiology in the mid-1960s at Harvard Medical School and he also initiated instruction in neurobiology at the MBL (Barlow et al., 1993:175-234; 203-234). Instructors in the MBL Neurobiology Course have included four Nobel laureates: Roderick MacKinnon (2003 prize), H. Robert Horvitz (2002), Paul Greengard (2000) and Bert Sakmann (1991). Another Nobelist, Albert Szent-Györgyi, conducted research at the MBL from 1947 to 1986, most significantly on the biochemical nature of muscular contraction. In the 1950s and 1960s, Frederik Bang and Jack Levin at the MBL discovered that the blood of the horseshoe crab clotted when exposed to bacterial endotoxins even in vanishingly small amounts. From this basic research, a reagent, Limulus amoebocyte lysate (LAL), was developed that can detect minute amounts of bacterial toxins. The LAL test has resulted in dramatic improvement in the quality of drugs and biological products for intravenous injection.

Ecosystems science

Ecosystems research became a year-round commitment at the MBL in 1962 with the founding of the Systematics-Ecology program, under the direction of Melbourne R. Carriker. In 1975, the MBL's Ecosystems Center was established, with George Woodwell as director. The original research focus was on the global carbon cycle, an emphasis maintained today. The Ecosystems Center has a year-round staff of more than 40 scientists who study a variety of ecosystems and their responses to human activities and environmental changes. The center is located in Woods Hole yet has a global reach, with active research sites in the Arctic tundra; in forest, coastal and marine sites in New England, Sweden and Brazil; and on the Antarctic Peninsula. The Ecosystems Center is home to three of the 26 U.S. Long Term Ecological Research (LTER) sites: Toolik Lake, Alaska; Plum Island, Massachusetts; and Palmer, Antarctica. Scientists in the Ecosystems Center study the effects of forest clearance and land-use change on atmospheric chemistry, watershed processes and coastal ecology, the global-scale anthropogenic enrichment of the nitrogen cycle, and ecosystem responses to global warming. The Ecosystems Center is directed by Hugh Ducklow, a biological oceanographer. The center's former directors, who are still active on the scientific staff, are Jerry Melillo, who studies the biogeochemistry of terrestrial ecosystems, and John Hobbie, a microbial ecologist. The Ecosystems Center is founded on a vision of collaborative, interdisciplinary science; shared lab facilities and instrumentation; and a long-term, large-scale, systems-wide view of ecosystem processes.

Comparative genomics, molecular evolution, and environmental microbiology

The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution was founded at the MBL in 1997. By comparing diverse genomes, scientists at the center are elucidating the evolutionary relationships of biological systems, and describing genes and genomes of biomedical and environmental significance. Microorganisms found in a wide range of ecosystems, including human parasites, are studied. Mitchell Sogin, the Bay Paul Center's founder and director, started the summer Workshop in Molecular Evolution at the MBL in 1988. In 2003-2004, Sogin launched the International Census of Marine Microbes, an ambitious, global effort to describe the biodiversity of marine micro-organisms. Early results from this census in 2006 revealed some 10 to 100 times more types of marine microbes than expected, and the vast majority are previously unknown, low-abundance microorganisms now called the “rare biosphere.” Other Bay Paul Center projects are focused on microbes that live in extreme environments, from hydrothermal vents to highly acidic ecosystems, which may lead to a better understanding of life that could exist on other planets. Activities at the Bay Paul Center are supported by advanced DNA sequencing and other genomics equipment at the center's Keck Ecological and Evolutionary Genetics Facility.

The Encyclopedia of Life

The MBL is a cornerstone institution in the Encyclopedia of Life (EOL) project, a global initiative to electronically document all 1.8 million named species on Earth. The MBL is home to the EOL's Biodiversity Informatics Group, which is developing the software infrastructure for the EOL. Also, the MBLWHOI Library is a member of the Biodiversity Heritage Library consortium, which is providing content to the EOL by digitizing thousands of books and other publications on natural history and the biological sciences.

References

  1. ^ a b "Nobel Laureates Affiliated with MBL". The Marine Biological Laboratory. http://www.mbl.edu/news/nobel/index.html. Retrieved 5 December 2011. 
  2. ^ "A Lab for All Seasons: Woods Hole's marine-biology program seeks a reach beyond summer" by Sam Kean subscription source The Chronicle of Higher Education, v55 no.3
  • Barlow, Robert B., John E. Dowling, and Gerald Weissmann, eds. (1993). The Biological Century: Friday Evening Talks at the Marine Biological Laboratory. Woods Hole: The Marine Biological Laboratory. ISBN 0-674-07403-3
  • Davidson, Eric (1993). “Introduction,” Embryology Course Centennial, Marine Biological Laboratory, 1893-1993. Pamphlet, MBLWHOI Library Archives.
  • Holmes, Frederic Lawrence (2001). Meselson, Stahl and the Replication of DNA. New Haven, Conn.: Yale University Press. ISBN 0-30008-540-0
  • Hunt, Tim (2004). “The Discovery of Cyclin (I).” Cell, Vol. S116, S63-S64.
  • Kenney, Diana E. and Borisy, Gary G. (2009) Thomas Hunt Morgan at the Marine Biological Laboratory: Naturalist and Experimentalist. Genetics 181: 841-846.
  • Lillie, Frank R. (1944). The Woods Hole Marine Biological Laboratory. Chicago: University Press. Reprinted in Biological Bulletin (1988) 174 (suppl.).
  • Llinas, Rodolfo. The Squid Giant Synapse. New York and Oxford: Oxford University Press, 1999. ISBN 0-19-511652-6
  • Maienschein, Jane (1989). One Hundred Years Exploring Life, 1888-1988: The Marine Biological Laboratory at Woods Hole. Boston: Jones and Bartlett Publishers. ISBN 0- 86720-120-7
  • Marine Biological Laboratory, First Annual Report, 1888. (Since 1909, the Annual Report of the MBL has been published in The Biological Bulletin.)
  • Pauly, Philip (1987). Controlling Life: Jacques Loeb and the Engineering Ideal in Biology. New York: Oxford University Press. ISBN 0195042441
  • Pauly, Philip (2000). Biologists and the Promise of American Life. Princeton, NJ: University Press. ISBN 0-691-04977-7
  • Rainger, Ronald, Keith R. Benson and Jane Maienschein, eds. (1988). The American Development of Biology. Philadelphia: University of Pennsylvania Press. ISBN 0-8122-8092-X

External links