The MacMahon Master theorem (MMT) is a result in enumerative combinatorics and linear algebra, both branches of mathematics. It was discovered by Percy MacMahon and proved in his monograph Combinatory analysis (1916). It is often used to derive binomial identities, most notably Dixon's identity.
Contents |
In the monograph, MacMahon found so many applications of his result, he called it "a master theorem in the Theory of Permutations." The result was re-derived (with attribution) a number of times, most notably by I. J. Good who derived it from his mulilinear generalization of the Lagrange inversion theorem. MMT was also popularized by Carlitz who found an exponential power series version. In 1962, Good found a short proof of Dixon's identity from MMT. In 1969, Cartier and Foata found a new proof of MMT by combining algebraic and bijective ideas (built on Foata's thesis), and further applications to combinatorics on words. Since then, MMT became a standard tool in enumerative combinatorics.
Although various q-Dixon identities have been known for decades, except for a Krattenthaler–Schlosser extension (1999), the proper q-analog of MMT remained elusive. After Garoufalidis–Lê–Zeilberger's quantum extension (2006), a number of noncommutative extensions were developed by Foata–Han, Konvalinka–Pak, and Etingof–Pak. Further connections to Koszul algebra and quasideterminants were also found by Hai–Lorentz, Hai–Kriegk–Lorenz, Konvalinka–Pak, and others.
Finally, according to J. D. Louck, theoretical physicist Julian Schwinger re-discovered the MMT in the context of his generating function approach to the angular momentum theory of many-particle systems. Louck writes:
Let be a complex matrix, and let be formal variables. Consider a coefficient
Let be another set of formal variables, and let be a diagonal matrix. Then
where the sum runs over all nonnegative integer vectors , and denotes the identity matrix of size .
Consider a matrix
Compute the coefficients G(2n, 2n, 2n) directly from the definition:
where the last equality follows from the fact that on the r.h.s. we have the product of the following coefficients:
which are computed from the binomial theorem. On the other hand, we can compute the determinant explicitly:
Therefore, by the MMT, we have new formula for the same coefficients:
where the last equality follows from the fact that we need use an equal number of times the all three terms in the power. Now equating two formulas for coefficients G(2n, 2n, 2n) we obtain an equivalent version of Dixon's identity: