Limit point

In mathematics, a limit point (or accumulation point) of a set S in a topological space X is a point x in X that can be "approximated" by points of S in the sense that every neighbourhood of x with respect to the topology on X also contains a point of S other than x itself. Note that x does not have to be an element of S. This concept profitably generalizes the notion of a limit and is the underpinning of concepts such as closed set and topological closure. Indeed, a set is closed if and only if it contains all of its limit points, and the topological closure operation can be thought of as an operation that enriches a set by adding its limit points.

Every finite or bounded interval of the real numbers that contains an infinite number of points must have at least one point of accumulation. If a bounded interval contains an infinite number of points and only one point of accumulation, then the sequence of points converges to the point of accumulation.

Contents

Definition

Let S be a subset of a topological space X. A point x in X is a limit point of S if every open set containing x contains at least one point of S different from x itself.

This is equivalent, in a T1 space, to requiring that every neighbourhood of x contains infinitely many points of S. (It is often convenient to use the "open neighbourhood" form of the definition to show that a point is a limit point and to use the "general neighbourhood" form of the definition to derive facts from a known limit point.)

Alternatively, if the space X is sequential, we may say that xX is a limit point of S if and only if there is an ω-sequence of points in S \ {x} whose limit is x; hence, x is called a limit point.

Types of limit points

If every open set containing x contains infinitely many points of S then x is a specific type of limit point called a ω-accumulation point of S.

If every open set containing x contains uncountably many points of S then x is a specific type of limit point called a condensation point of S.

If every open set U containing x satisfies |US| = |S| then x is a specific type of limit point called a complete accumulation point of S.

A point xX is a cluster point of a sequence (xn)n ∈ N if, for every neighbourhood V of x, there are infinitely many natural numbers n such that xn ∈ V. If the space is sequential, this is equivalent to the assertion that x is a limit of some subsequence of the sequence (xn)n ∈ N.

The concept of a net generalizes the idea of a sequence. Cluster points in nets encompass the idea of both condensation points and ω-accumulation points. Clustering and limit points are also defined for the related topic of filters.

The set of all cluster points of a sequence is sometimes called a limit set.

Some facts

External links