Local Area Augmentation System

The Local Area Augmentation System (LAAS) is an all-weather aircraft landing system based on real-time differential correction of the GPS signal. Local reference receivers located around the airport send data to a central location at the airport. This data is used to formulate a correction message, which is then transmitted to users via a VHF Data Link. A receiver on an aircraft uses this information to correct GPS signals, which then provides a standard ILS-style display to use while flying a precision approach. The International Civil Aviation Organization (ICAO) calls this type of system a Ground Based Augmentation System (GBAS).

Contents

History

The Local Area Augmentation System (LAAS) is designed to correct some of the errors inherent to GPS. One problem is the lack of a real-time, rapid-response monitoring system. Category I equipment will normally alert the user of the problem within ten seconds of detecting a problem. GPS has no such rapid-warning system. For example, if a satellite develops a clock problem, there is no way to rapidly warn the user not to use that satellite. WAAS, LAAS and other differential solutions fix this problem and provide GPS system integrity. Another problem is positional accuracy. Sources of error such as satellite clock drift or ionospheric delays can introduce several meters of error in an aircraft's position. These errors must be corrected in real time for a precision approach where there is little or no visibility.

Honeywell has developed a Non-Federal CAT-1 LAAS which received System Design Approval (SDA) from the Federal Aviation Administration (FAA) in September 2009[1] Current proposed installations include: airports in Newark, NJ; Memphis, TN; Atlantic City, NJ; and Olathe, KS. [1]

Operation

Local reference receivers are located around an airport at precisely surveyed locations. The signal received from the GPS constellation is used to calculate the position of the LAAS ground station, which is then compared to its precisely surveyed position. This data is used to formulate a correction message which is transmitted to users via a VHF data link. A receiver on the aircraft uses this information to correct the GPS signals it receives. This information is used to create an ILS-type display for aircraft approach and landing purposes. Honeywell’s CAT I system provides precision approach service within a radius of 23 NM surrounding a single airport. LAAS mitigates GPS threats in the Local Area to a much greater accuracy than WAAS and therefore provides a higher level of service not attainable by WAAS. LAAS's VHF uplink signal is currently slated to share the frequency band from 108 MHz to 118 MHz with existing ILS localizer and VOR navigational aids. LAAS utilizes a Time Division Multiple Access (TDMA) technology in servicing the entire airport with a single frequency allocation. With future replacement of ILS, LAAS will reduce the congested VHF NAV band.

Accuracy

The current Non-Fed LAAS is capable of achieving a Category I ILS accuracy of 16 m laterally and 4 m vertically. The goal of the LAAS program is to provide Category III ILS capability. The minimum accuracy for lateral and vertical errors of a Category III system are specified in RTCA DO-245A, Minimum Aviation System Performance Standards for Local Area Augmentation System (LAAS). Category III GBAS will allow aircraft to land with zero visibility utilizing 'autoland' systems.

Benefits

One of the primary benefits of LAAS is that a single installation at a major airport can be used for multiple precision approaches within the local area. For example, if Chicago O'Hare has 12 runway ends each with a separate ILS, all 12 ILS facilities can be replaced with a single LAAS system. This represents a significant cost savings in maintenance and upkeep of the existing ILS equipment.

Another benefit is the potential for approaches that are not straight- in. Aircraft equipped with LAAS technology can utilize curved or complex approaches such that they could be flown on to avoid obstacles or to decrease noise levels in areas surrounding an airport.

The FAA also contends that only a single set of navigational equipment will be needed on an aircraft for both LAAS and WAAS capability. This lowers initial cost and maintenance per aircraft since only one receiver is required instead of multiple receivers for NDB's, DME, VOR, ILS, MLS and GPS. The FAA hopes this will result in decreased cost to the airlines and passengers as well as general aviation.

Drawbacks

LAAS shares in some of the same threats as all RF based landing systems; that being unintentional jamming, signal degredation due to multipath causing loss of accuracy or signal fading.

In order to mitigate these problems, the resulting national system will likely have LAAS capability at major airports, WAAS capability for the rest of North America with a limited amount of conventional navaids as a national backup.

Variations

The Joint Precision Approach and Landing System (JPALS) is a similar system for military usage.

Future

The FAA’s National Airspace System (NAS) Enterprise Architecture (EA) is the blueprint for transforming the current NAS to the Next Generation Air Transportation System (NextGen). The NAS Service Roadmaps lay out the strategic activities for service delivery to improve NAS operations and move towards the NextGen vision. They show the evolution of major FAA investments/programs in today's NAS services to meet the future demand. The GBAS Precision Approaches is one of the investment programs that provide solution to “Increase Flexibility in the Terminal Environment” in the NextGen Implementation Plan.

The FAA plans to replace legacy navigation systems with satellite based navigation technology. The FAA has determined that GBAS is the only cost effective alternative to the existing Instrument Landing Systems (ILS) by providing terminal, non-precision, and CAT I/II/III precision approach capabilities in the NAS. Some of these existing ILS systems will be phased out over time as GBAS are installed. A number of ILS facilities are expected to remain operational, to continue to provide precision approach service as a backup in the event of unavailability of GBAS services.

See also

References

External links