Kinetin

Kinetin
Identifiers
CAS number 525-79-1 Y
UNII P39Y9652YJ Y
RTECS number AU6270000
Properties
Molecular formula C10H9N5O
Molar mass 215.21 g/mol
Appearance off-white amorphous powder
Melting point

269 to 271 °C (decomposes)

Boiling point

decomposes

Structure
Crystal structure cubic
Hazards
S-phrases S22 S24/25
Related compounds
Related cytokinin
 Y (verify) (what is: Y/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Infobox references

Kinetin is a kind of cytokinin, a class of plant hormone that promotes cell division. Kinetin was originally isolated by Miller[1] and Skoog et al.[2] as a compound from autoclaved herring sperm DNA that had cell division-promoting activity. It was given the name kinetin because of its ability to induce cell division, provided that auxin was present in the medium. The story of the discovery of kinetin [2] is a fascinating example of the twists and turns of scientific discovery. Kinetin is often used in plant tissue culture for inducing formation of callus (in conjunction with auxin) and to regenerate shoot tissues from callus (with lower auxin concentration).

For a long time, it was believed that kinetin was an artifact produced from the deoxyadenosine residues in DNA, which degrade on standing for long periods or when heated during the isolation procedure. Therefore, it was thought that kinetin does not occur naturally, but, since 1996, it has been shown by several researchers that kinetin exists naturally in the DNA of cells of almost all organisms tested so far, including human and various plants. The mechanism of production of kinetin in DNA is thought to be via the production of furfural — an oxidative damage product of deoxyribose sugar in DNA — and its quenching by the adenine base's converting it into N6-furfuryladenine, kinetin.

Since 1994, kinetin has been thoroughly tested for its powerful anti-aging effects in human skin cells and other systems. At present, kinetin is one of the widely used components in numerous skin care cosmetics and cosmeceuticals, such as Valeant products kinerase [3]. There are some reports published on other biological effects of kinetin in human beings, for example its effects as anti-platelet aggregation factor reducing thrombosis formation. In addition, it has been shown to be capable of correcting RNA mis-splicing in the disease of familial dysautonomia, in which exon 20 of IKBKAP is skipped instead of included in the disease, leading to insufficient levels of IKBKAP protein product as a result of frame-shift-induced nonsense-mediated decay.[4][5]

History

In 1939 P. A. C. Nobécourt (Paris) began the first permanent callus culture from root explants of carrot (Daucus carota). Such a culture can be kept forever by successive transplantations onto fresh nutrient agar. The transplantations occur every three to eight weeks. Callus cultures are not cell cultures, since whole tissue associations are cultivated. Though many cells keep their ability to divide, this is not true for all. One reason for this is the aneuploidy of the nuclei and the resultant unfavourable chromosome constellations.

J. van Overbeek (Rijksuniversiteit Utrecht) introduced in 1941 coconut milk as a new component of nutrient media for callus cultures. Coconut milk is liquid endosperm. It stimulates the embryo to grow when it is supplied with food at the same time. Results yielded from callus cultures showed that its active components stimulate the growth of foreign cells, too.

In 1954, F. Skoog (University of Wisconsin, Madison) developed a technique for the generation and culture of wound tumour tissue from isolated shoot parts of tobacco (Nicotiana tabacum). The developing callus grows when supplied with yeast extract, coconut milk, or old DNA preparations. Freshly prepared DNA has no effect but becomes effective after autoclaving. This led to the conclusion that one of its breakdown products is required for cell growth and division. The substance was characterized, was given the name kinetin, and classified as a phytohormone.

Kinetin is also claimed to have dermatologic effects and is used in some cosmetics.

References

  1. ^ Schwartz, Dale. "Carlos O. Miller" (pdf). http://www.indiana.edu/~bioweb/about/history/biographies/Miller_Carlos_retirement.pdf. Retrieved 15 November 2011. 
  2. ^ a b Amasino, R. (2005). "1955: Kinetin Arrives. The 50th Anniversary of a New Plant Hormone". Plant Physiology 138 (3): 1177–1184. doi:10.1104/pp.104.900160. PMC 1176392. PMID 16009993. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1176392.  edit
  3. ^ http://www.kinerase.com/kinerase/science.asp?catalog_name=KCP
  4. ^ Shohat, M.; Halpern, G. J.; Pagon, R. A.; Bird, T. D.; Dolan, C. R.; Stephens, K. (1993). Familial Dysautonomia. PMID 20301359.  edit
  5. ^ Slaugenhaupt, S. A.; Mull, J.; Leyne, M.; Cuajungco, M. P.; Gill, S. P.; Hims, M. M.; Quintero, F.; Axelrod, F. B. et al. (2003). "Rescue of a human mRNA splicing defect by the plant cytokinin kinetin". Human Molecular Genetics 13 (4): 429–436. doi:10.1093/hmg/ddh046. PMID 14709595.  edit

See also