Corneal transplantation | |
---|---|
Intervention | |
ICD-9-CM | 11.6 |
MeSH | D016039 |
Corneal transplantation, also known as corneal grafting, is a surgical procedure where a damaged or diseased cornea is replaced by donated corneal tissue (the graft) in its entirety (penetrating keratoplasty) or in part (lamellar keratoplasty). The graft has been removed from a recently deceased individual with no known diseases or other factors that may affect the viability of the donated tissue or the health of the recipient. The cornea is the transparent front part of the eye that covers the iris, pupil and anterior chamber. The surgical procedure is performed by ophthalmologists, medical doctors who specialize in eyes, and is often done on an outpatient basis. Donors can be of any age as was Janis Babson, who donated her eyes at age 10.
Contents |
Indications for corneal transplantation include the following:
In most instances, the patient will meet with their ophthalmologist for an examination in the weeks or months preceding the surgery. During the exam, the ophthalmologist will examine the eye and diagnose the condition. The doctor will then discuss the condition with the patient, including the different treatment options available. The doctor will also discuss the risks and benefits of the various options. If the patient elects to proceed with the surgery, the doctor will have the patient sign an informed consent form. The doctor might also perform a physical examination and order lab tests, such as blood work, X-rays, or an EKG.
The surgery date and time will also be set, and the patient will be told where the surgery will take place. Within the United States, the supply of corneas is sufficient to meet the demand for surgery and research purposes. Therefore, unlike other tissues for transplantation, delays and shortages are not an issue.[1]
On the day of the surgery, the patient arrives to either a hospital or an outpatient surgery center, where the procedure will be performed. The patient is given a brief physical examination by the surgical team and is taken to the operating room. In the OR, the patient lies down on an operating table and is either given general anesthesia, or local anesthesia and a sedative.
With anesthesia induced, the surgical team prepares the eye to be operated on and drapes the face around the eye. An eyelid speculum is placed to keep the lids open, and some lubrication is placed on the eye to prevent drying. In children, a metal ring is stitched to the sclera which will provide support of the sclera during the procedure.
A trephine (a circular cutting device) is used by the surgeon to cut the donor cornea, which removes a circular disc of cornea. A second trephine is then used to remove a similar sized portion of the patient's cornea. The donor tissue is then sewn in place with sutures.
Antibiotic eyedrops placed, the eye is patched, and the patient is taken to a recovery area while the effects of the anesthesia wear off. The patient typically goes home following this and sees the doctor the following day for the first post operative appointment.
Encompasses several techniques which selectively replace diseased layers of the cornea while leaving healthy layers in place. Advantages include improved tectonic integrity of the eye and reduced risk of rejection. Disadvantages include the technically challenging nature of these procedures which replace portions of a structure only 500 microns thick, and reduced optical performance of the donor/recipient interface compared to full thickness keratoplasty.
In this procedure, the anterior layers of the central cornea are removed and replace with donor tissue. Endothelial cells and Descemets membrane are left in place. This technique is used in cases of anterior corneal opacifications, scars, and ectatic diseases such as keratoconus.
Replaces the patient's endothelium with a transplanted disc of posterior stroma/Descemets/endothelium (DSEK) or Descemets/endothelium (DMEK).
This relatively new procedure has revolutionized treatment of disorders of the innermost layer of the cornea (endothelium). Unlike a full thickness corneal transplant, the surgery can be performed with one or no sutures. Patients may recover functional vision in days to weeks, as opposed to up to a year with full thickness transplants.
During surgery the patient's corneal endothelium is removed and replaced with donor tissue. With DSEK, the donor includes a thin layer of stroma, as well as endothelium, and is commonly 100-150 microns thick. With DMEK only the endothelium is transplanted. In the immediate post operative period the donor tissue is held in position with an air bubble placed inside the eye (the anterior chamber). The tissue self adheres in a short period and the air is adsorbed into the surrounding tissues.
Complications include displacement of the donor tissue requiring repositioning ('refloating'). This is more common with DMEK than DSEK. Folds in the donor tissue may reduce the quality of vision requiring repair. Rejection of the donor tissue may require repeating the procedure. Gradual reduction in endothelial cell density over time can lead to loss of clarity and require repeating the procedure.
Patients with endothelial transplants frequently achieve best corrected vision in the 20/30 to 20/40 range, although some reach 20/20. optical irregularity at the graft/host interface may limit vision below 20/20.
The risks are similar to other intraocular procedures, but additionally include graft rejection (lifelong), detachment or displacement of lamellar transplants and primary graft failure.
There is also a risk of infection. Since the cornea has no blood vessels (it takes its nutrients from the aqueous humor) it heals much more slowly than a cut on the skin. While the wound is healing, it is possible that it might become infected by various microorganisms. This risk is minimized by antibiotic prophylaxis (using antibiotic eyedrops, even when no infection exists).
Graft failure can occur at any time after the cornea has been transplanted, even years or decades later. The causes can vary, though it is usually due to new injury or illness. Treatment can be either medical or surgical, depending on the individual case. An early, technical cause of failure, may be an excessively tight stitch cheesewiring through the sclera.
The prognosis for visual restoration and maintenance of ocular health with corneal transplants is generally very good. Risks for failure or guarded prognoses are multifactorial. The type of transplant, the disease state requiring the procedure, the health of the other parts of the recipient eye and even the health of the donor tissue may all confer a more or less favorable prognosis.
The majority of corneal transplants result in significant improvement in visual function for many years or a lifetime. In cases of rejection or transplant failure, the surgery generally can be repeated.
The first cornea transplant was performed in 1905 by Eduard Zirm (Olomouc Eye Clinic, now Czech Republic), making it one of the first types of transplant surgery successfully performed. Another pioneer of the operation was Ramon Castroviejo. Russian eye surgeon Vladimir Filatov's attempts at tranplanting cornea started with the first try in 1912 and were continued, gradually improving until at 6 May 1931 he successfully grafted a patient using corneal tissue from a deceased person.[2] He widely reported of another transplant in 1936, disclosing his technique in full detail.[3] In 1936, Castroviejo did a first transplantation in an advanced case of keratoconus, achieving significant improvement in patient's vision.[4][5]
Advances in operating microscopes enabled surgeons to have a more magnified view of the surgical field, while advances in materials science enabled them to use sutures finer than a human hair.
Instrumental in the success of cornea transplants were the establishment of eye banks. These are organizations located throughout the world to coordinate the distribution of donated corneas to surgeons, as well as providing eyes for research. Some eye banks also distribute other anatomical gifts.
The Boston keratoprosthesis is the most widely used synthetic cornea to date with over 900 procedures performed worldwide in 2008. The Boston KPro was developed at the Massachusetts Eye and Ear Infirmary under the leadership of Claes Dohlman, MD, PhD.[6]
In cases where there have been several graft failures or the risk for keratoplasty is high, synthetic corneas can substitute successfully for donor corneas. Such a device contains a peripheral skirt and a transparent central region. These two parts are connected on a molecular level by an interpenetrating polymer network, made from poly-2-hydroxyethyl methacrylate (pHEMA). AlphaCor is an FDA-approved type of synthetic cornea measuring 7.0 mm in diameter and 0.5 mm in thickness. The main advantages of synthetic corneas are that they are biocompatible, and the network between the parts and the device prevents complications that could arise at their interface. The probability of retention in one large study was estimated at 62% at 2 years follow-up.[7]