Ionophore

An ionophore is a lipid-soluble molecule usually synthesized by microorganisms to transport ions across the lipid bilayer of the cell membrane. There are two broad classifications of ionophores.

  1. Chemical compounds (mobile ion carriers) that bind to a particular ion,[1] shielding its charge from the surrounding environment, and thus facilitating its crossing of the hydrophobic interior of the lipid membrane.
  2. Channel formers[2] that introduce a hydrophilic pore into the membrane, allowing ions to pass through while avoiding contact with the membrane's hydrophobic interior.

Contents

Mechanism of action

Ionophores disrupt transmembrane ion concentration gradients, required for the proper functioning and survival of microorganisms, and thus have antibiotic properties. They are produced naturally by a variety of microbes and act as a defense against competing microbes. Many antibiotics, particularly the macrolide antibiotics, are ionophores that exhibit high affinities for Na+ or K+.[3] The structure of the sodium and potassium complexes of antibiotics have been repeatedly verified by X-ray crystallography.[4]

In laboratory research, ionophores are used to increase the permeability of biological membranes to certain ions. Additionally, some ionophores are used as antibiotics and/or as growth enhancing feed additives for certain feed animals such as cattle (see monensin).[5]

Synthetic ionophores

Most prominent synthetic ionophores are those based on crown ethers, cryptands, and calixarenes. These synthetic species are often macrocyclic.[3] Some synthetic agents are not macrocyclic, e.g., Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. Even simple organic compounds, such as phenols, exhibit ionophoric properties.

Appendix: list of representative biological ionophores

With the ion(s) they act upon:

References

  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "Ionophore".
  2. ^ "Ionophores - MeSH Result". http://www.ncbi.nlm.nih.gov/sites/entrez?Db=mesh&Cmd=ShowDetailView&TermToSearch=68007476&ordinalpos=1&itool=EntrezSystem2.PEntrez.Mesh.Mesh_ResultsPanel.Mesh_RVDocSum. 
  3. ^ a b Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Oxford: Butterworth-Heinemann. ISBN 0080379419. 
  4. ^ L. K. Steinrauf, J. A. Hamilton, M. N. Sabesan "Crystal structure of valinomycin-sodium picrate. Anion effects on valinomycin-cation complexes" J. Am. Chem. Soc. 1982, Volume 104, pp 4085–4091. doi:10.1021/ja00379a008
  5. ^ The U.S. Department of Agriculture sent a letter to Tyson Foods to remove labels for chickens that said "raised without antibiotics" because of the use of ionophores in their feed. Kabel, Marcus; Christine Simmons (2007-11-20). "USDA Revokes OK for Tyson Chicken Labels". http://ap.google.com/article/ALeqM5iYfYJmjwYMb-6RiqjCbJ481k5xjgD8T16P5O0. Retrieved 2007-11-20. 

External links