Indoplanorbis exustus

Indoplanorbis exustus
Conservation status
Scientific classification
Kingdom: Animalia
Phylum: Mollusca
Class: Gastropoda
(unranked): clade Heterobranchia
clade Euthyneura
clade Panpulmonata
clade Hygrophila
Superfamily: Planorboidea
Family: Planorbidae
Subfamily: Bulininae
Tribe: Bulinini
Genus: Indoplanorbis
Annandale & Prashad, 1921[2][3]
Species: I. exustus
Binomial name
Indoplanorbis exustus
(Deshayes, 1834)[4]
Synonyms[5][6]

Planorbis exustus Deshayes, 1834

Indoplanorbis exustus is a species of air-breathing freshwater snail, an aquatic pulmonate gastropod mollusk in the family Planorbidae, the ram's horn snails. The species is the sole member of its genus and is widely distributed across the tropics. It serves as an important intermediate host for several trematode parasites.[7] The invasive nature and ecological tolerance of Indoplanorbis exustus add to its importance in veterinary and medical science.[7]

Contents

Taxonomy

Indoplanorbis exustus is the only known species in the genus Indoplanorbis. In spite of its long history and wide geographical range, it is thought that Indoplanorbis includes only a single species.[7] However phylogeography research by Liu et al. (2010)[7] revealed the phylogenetic depth of divergences between the Indian clades and Southeast Asian clades, together with habitat and parasitological differences suggest that Indoplanorbis exustus may comprise more than one species.[7]

The most phylogenetically related genus to Indoplanorbis is genus Bulinus.[8]

Description

The shell of this species, like all planorbids is sinistral in coiling, but is carried upside down and thus appears to be dextral. The shell of Indoplanorbis exustus is discoid with rapidly increasing whorls.[5] Each whorl is higher than it is wide.[5] The width of the shell is 5[8]-25 mm.[5] The height of the shell is 4.5[8]-13 mm.[5]

Similar shell has also Planorbella duryi and Biomphalaria pfeifferi.[8]

Because of its wide distribution was the Indoplanorbis exustus subject of various studies including: the regulation of calcium after shell damage (1980),[9] Hemocytes of Indoplanorbis exustus were under research by Mahilini & Rajendran (2008).[10]

Distribution

The freshwater snail Indoplanorbis exustus is found across India, Sri Lanka,[11] Southeast Asia (for example Thailand),[7] central Asia (Afghanistan),[12] Arabia and Africa.[7]

The type locality of Indoplanorbis exustus is marshes on the coast of Malabar in southwestern India.[5]

Indoplanorbis exustus is a common snail across Southeast Asia and the Indian sub-continent.[7] The snail is also found in the Middle East (Oman[13] and Socotra[5]) and Nigeria and the Ivory Coast;[7] these findings were attributed by Brandt (1974)[14] to recent introductions by human activities (Brandt's view has been frequently cited in the literature on Indoplanorbis).[5][7][13][15] In contrast to Asia, the well documented appearance of the snail in Africa (e.g., Nigeria[8] and Ivory Coast[16]) and more recently (2002) in the Lesser Antilles,[15] is almost certainly the result of introductions through human activities over the last 50–100 years.[7]

This species is already established in the USA, and is considered to represent a potentially serious threat as a pest, an invasive species which could negatively effect agriculture, natural ecosystems, human health or commerce. Therefore it has been suggested that this species be given top national quarantine significance in the USA.[17]

Biogeography

Meier-Brook (1984)[18] adopted an African (Gondwanan) origin for Indoplanorbis with rafting to Asia since the Cretaceous on the northward migrating Indian craton; this author also considered a Europe to Southwest Asia tract or an Africa to South India dispersal.[7] Morgan et al. (2002)[19] attributed the occurrence of Indoplanorbis in India to colonization (from Africa) via the Middle East land connection.[7] Clearly the two different dispersal mechanisms imply very different chronologies; the Gondwanan vicariance hypothesis implies that proto-Indoplanorbis has been present in India since the late Eocene (35 Ma; India: Asia collision), whereas dispersal via the Sinai-Levant suggests a Plio-Pleistocene arrival.[7] The results by Liu et al. (2010) indicated a radiation beginning in the late Miocene with a divergence of an ancestral bulinine lineage into Assam and peninsular India clades.[7] A Southeast Asian clade diverged from the peninsular India clade late-Pliocene; this clade then radiated at a much more rapid pace to colonize all of the sampled range of Indoplanorbis in the mid-Pleistocene.[7]

Ecology

In captivity Indoplanorbis exustus can be fed for example by lettuce[20] and spinach.[21] Feeding with sheep's liver is recommended fo maintenance[21] and feeding with synthetic food (M/s Hindustan Lever's rat food) is recommended for breeding.[21]

Habitat

The snail is found in small ponds, pools, and less commonly in rice paddy fields.[7] The snail may also occur in semi-permanent pools formed in flooded areas of fields, where it can survive the dry season buried in mud.[7] The desiccation tolerance of adults snails is high while the resistance of juvenile snails is very low.[22] Consequently, dispersal may occur in clumps of mud adhered to the bodies of cattle or across water in flotsam (vegetation mats), and possibly also attached to migratory birds (although this has not been observed for Indoplanorbis exustus).[7]

Life cycle

Indoplanorbis exustus is a hermaphroditic invasive snail species with high fecundity.[7] Within one year of introduction the snail is able to colonize habitats with well established populations of other pulmonate and prosobranch snails.[7] The snail requires a water temperature in excess of 15 °C for maturation.[7] At the optimum temperature of 30 °C each snail can lay up to 800 eggs.[7] There is from 2 to 43 eggs in one cluster with an average 20 eggs in one cluster.[23] The capacity for self-fertilization and high fecundity probably underlies the invasive potential of the species.[7] The average life span of Indoplanorbis exustus is 4 months[23] and during this time it lays about 60 egg clusters.[23]

Predators

Eggs of Indoplanorbis exustus were experimentally predated and destroyed by Pomacea bridgesii.[23] Raut & Aditya (2002) hypothetized that Pomacea bridgesii could be a potential biocontrol agent for Indoplanorbis exustus.[23]

Parasites

Indoplanorbis is of economic importance in that it is responsible for the transmission of several species of the genus Schistosoma which infect cattle and cause reduced livestock productivity.[7] The snail is also of medical importance as a source of cercarial dermatitis among rural workers, particularly in India.[7]

Indoplanorbis exustus is best known as the intermediate host responsible for the transmission of Schistosoma nasale Rao, 1933 and Schistosoma spindale (Montgomery, 1906), as well as other trematodes such as Echinostoma spp. and some spirorchids (Spirorchiidae).[7] A third species of Schistosoma, Schistosoma indicum (Montgomery, 1906) is also transmitted by Indoplanorbis exustus.[7] Although other snails have been implicated in transmission of these three Schistosoma spp. (e.g., Lymnaea luteola is a host for Schistosoma indicum and Schistosoma nasale. Lymnaea acuminata is an intermediate host for Schistosoma nasale and Schistosoma spindale), Indoplanorbis exustus is the most important host for Schistosoma nasale and Schistosoma spindale, as well as for Schistosoma indicum in certain regions.[7] Indeed Indoplanorbis exustus may be the sole natural intermediate host for these three Schistosoma species on the Indian sub-continent.[7]

Indoplanorbis exustus is also an intermediate host for:

Indoplanorbis exustus has been implicated in outbeaks of cercarial dermatitis in human populations in India, Laos, Malaysia and Thailand.[7] Cercarial dermatitis results from the cutaneous allergic reaction in people exposed to larval schistosomes (cercariae) shed by infected snails into freshwater bodies such as lakes, ponds, and paddy fields.[7] The cercariae cause pruritis and papular eruptions, with often severe secondary infections, as they attempt to infect a non-permissive definitive host and die in the skin.[7]

Toxicology

Aqueous extract of a common medicinal plant of India Pedialanthus tithymaloide (Euphorbiaceae) has molluscicidal activity against Indoplanorbis exustus.[25]

Ethanol extract of Solanum xanthocarpum has molluscicidal activity against Indoplanorbis exustus LC50 = 198.00 mg/l and LC90 = 236.80 mg/l.[26]

The latex of Euphorbia milii has molluscicidal activity against Indoplanorbis exustus that depends on its hybrid of the plant.[27]

The molluscicidal activity of latex of Thevetia peruviana, Alstonia scholaris and Euphorbia pulcherrima against Indoplanorbis exustus was examined by Singh & Sunil (2005).[28]

References

This article incorporates CC-BY-2.0 text from the reference.[7]

  1. ^ a b c d e f g h i j k l m n o Budha P. B., Dutta J. & Daniel B. A. (2010). Indoplanorbis exustus. In: IUCN 2011. IUCN Red List of Threatened Species. Version 2011.1. <www.iucnredlist.org>. Downloaded on 25 June 2011.
  2. ^ Annandale N. & Prashad B. (1921). caption Aquatic Pulmonata: 565-592. Indoplanorbis is on pages 578-582. In: Annandale N., Prashad B. & Amin-ud-Din (1921). "The Aquatic and Amphibious Molluscs of Manipur". Records of the Indian Museum 22(4): 528-632.
  3. ^ Prashad B. & Annandale N. (1921). "Report on a collection of Sumatran Molluscs from Fresh and Brackish water". Records of the Indian Museum 22(4): 461-508. Indoplanorbis is on pages 472-473.
  4. ^ Deshayes G. P. (1834). in: Bélanger C. Voyage aux Indes-Orientales, Zool. 3: 417. plate 1, figures 11-13.
  5. ^ a b c d e f g h Brown D. S. (1994). Freshwater snails of Africa and their medical importance. London: Taylor & Francis. 207-208.
  6. ^ Preston H. B. (1915). Mollusca. Freshwater Gastropoda & Pelecypoda. The Fauna of British India, Including Ceylon and Burma. Taylor & Francis, London, 244 pp., 29 figs. 115-116.
  7. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah Liu L. et al. (2010) "The phylogeography of Indoplanorbis exustus (Gastropoda: Planorbidae) in Asia". Parasites & Vectors 3: 57. doi:10.1186/1756-3305-3-57.
  8. ^ a b c d e Kristensen T. K. & Ogunnowof O. (1987). "Indoplanorbis exustus (Deshayes, 1834), a freshwater snail new for Africa, found in Nigeria (Pulmonata: Planorbidae)". Journal of Molluscan Studies 53(2): 245-246. doi:10.1093/mollus/53.2.245, abstract.
  9. ^ Vaidya D. P. & Nagabhushanam R. (1980). "Calcium regulation in the freshwater snail indoplanorbis exustus during shell repair". Hydrobiologia 69(1-2):29-32. doi:10.1007/BF00016532.
  10. ^ Mahilini H. M. & Rajendran A. "Categorization of hemocytes of three gastropod species Trachea vittata (Muller), Pila globosa (Swainson) and Indoplanorbis exustus (Dehays)". Journal of Invertebrate Pathology 97(1): 20-26. doi:10.1016/j.jip.2007.07.007.
  11. ^ Brant S. V., Morgan J. A. T., Mkoji G. M., Snyder S. D., Rajapakse R. P. V. J. & Loker E. S. (2008). "AN APPROACH TO REVEALING BLOOD FLUKE LIFE CYCLES, TAXONOMY, AND DIVERSITY: PROVISION OF KEY REFERENCE DATA INCLUDING DNA SEQUENCE FROM SINGLE LIFE CYCLE STAGES". J Parasitol. Author manuscript. PMC PMC2519025.
  12. ^ Solem A. (1979) "Some mollusks from Afghanistan". Fieldiana Zoology new series 1: 1-89. cited pages 11-12.
  13. ^ a b Brown D. S. & Gallagher M. D. (1985). "Freshwater snails of Oman, South Eastern Arabia." Hydrobiologia 127: 125-149. doi:10.1007/BF00004192.
  14. ^ Brandt R. A. (1974). "The non-marine mollusca of Thailand". Archiv für Molluskenkunde 105: 1-423.
  15. ^ a b Pointier J. P., David P. & Jarne P. (2005). "Biological invasions: the case of planorbid snails." Journal of Helminthology 79: 249-256. doi:10.1079/JOH2005292.
  16. ^ Mouchet F., Rey J. L. & Cunin P. (1987). "Découverte d'Indoplanorbis exustus (Planorbidae, Bulininae) à Yamossoukro, Côte d'Ivoire". Bull Soc Pathol Exot 80: 811-812.
  17. ^ Cowie R. H., Dillon R. T., Robinson D. G. & Smith J. W. (2009). "Alien non-marine snails and slugs of priority quarantine importance in the United States: A preliminary risk assessment". American Malacological Bulletin 27: 113-132. doi:10.4003/006.027.0210 PDF.
  18. ^ Meier-Brook C. (1984). "A preliminary biogeography of freshwater pulmonate gastropods". World-wide snails 1: 23-27.
  19. ^ Morgan J. A. T., DeJong R. J., Jung Y., Khallaayoune K., Kock S., Mkoji G. M. & Loker E. S. (2002). "A phylogeny of planorbid snails, with implications for the evolution of Schistosoma parasites". Molecular Phylogenetics and Evolution 25(3): 477-488. doi:10.1016/S1055-7903(02)00280-4.
  20. ^ Haas W., Granzer M., Brockelman C. R. (1990). "Finding and recognition of the bovine host by the cercariae of Schistosoma spindale". Parasitology Research 76(4): 343-350. PubMed, doi:10.1007/BF00928190.
  21. ^ a b c Parashar B. D., Kumar A. & Rao K. M.(1986). "ROLE OF FOOD IN MASS CULTIVATION OF THE FRESHWATER SNAIL Indoplanorbis exustus, VECTOR OF ANIMAL SCHISTOSOMIASIS ". Journal of Molluscan Studies 52(2): 120-124. doi:10.1093/mollus/52.2.120, abstract.
  22. ^ Parashar B. D. & Rao K. M. (1982). "Effect of desiccation on freshwater snail, Indoplanorbis exustus, intermediate host of schistosomiasis". Japanese journal of medical science & biology 35(5-6): 243-247. PubMed
  23. ^ a b c d e Raut S. K. & Aditya G. (2002). "Destruction of Indoplanorbis exustus (Planorbidae) eggs by Pomacea bridgesi (Ampullariidae)". Molluscan Research 22(1): 87-90. PDF.
  24. ^ a b Chai J.-Y., Shin E.-H., Lee S.-H. & Rim H.-J. (2009). "Foodborne Intestinal Flukes in Southeast Asia". The Korean Journal of Parasitology 47(Supplement): 69–102. doi:10.3347/kjp.2009.47.S.S69, PMC PMC2769220.
  25. ^ Tiwari S., Singh S. K. & Singh A. (2005). "THE CONTRIBUTION OF THE ANTICHOLINESTERASE ACTIVITY OF Pedialanthus tithymaloide TO ITS MOLLUSCICIDAL ACTIVITY". African Journal of Traditional, Complementary and Alternative medicines 2(3): 326-336. abstract.
  26. ^ Changbunjong T., Wongwit W., Leemingsawat S., Tongtokit Y. & Deesin V. (2010). "Effect of crude extract of Solanum xanthocarpum against snails and mosquito larvae". The Southeast Asian journal of tropical medicine and public health 41(2): 320-325. PubMed
  27. ^ Sermsart B., Sripochang S., Suvajeejarun T. & Kiatfuengfoo R. (2005). "The molluscicidal activities of some Euphorbia milii hybrids against the snail Indoplanorbis exustus". The Southeast Asian journal of tropical medicine and public health 36(4): 192-195. PubMed. PDF.
  28. ^ Singh A. & Sunil S. K. (2005). "Molluscicidal evaluation of three common plants from India". Fitoterapia. 76(7-8): 747-751. PubMed. doi:doi:10.1016/j.fitote.2005.08.002.

External links