Indium gallium nitride

Indium gallium nitride (InGaN, InxGa1-xN) is a semiconductor material made of a mix of gallium nitride (GaN) and indium nitride (InN). It is a ternary group III/group V direct bandgap semiconductor. Its bandgap can be tuned by varying the amount of indium in the alloy. The ratio of In/Ga is usually between 0.02/0.98 and 0.3/0.7.

Contents

InGaN LED applications

Indium gallium nitride is the light-emitting layer in modern blue and green LEDs and often grown on a GaN buffer on a transparent substrate as, e.g. sapphire or silicon carbide. It has a high heat capacity and its sensitivity to ionizing radiation is low (like other group III nitrides), making it also a potentially suitable material for solar photovoltaic devices, speicifically for arrays for satellites.

It is theoretically predicted that spinodal decomposition of indium nitride should occur for compositions between 15% and 85%, leading to In-rich and Ga-rich InGaN regions or clusters. However, only a weak phase segregation has been observed in experimental local structure studies.[1]

GaN is a defect-rich material with typical dislocation densities exceeding 108 cm−2. Light emission from InGaN layers grown on such GaN buffers used in blue and green LEDs is expected to be weak because of non-radiative recombination at such defects. Nevertheless, InGaN quantum wells, are efficient light emitters in green, blue, white and ultraviolet light-emitting diodes and diode lasers. The indium-rich regions have a lower bandgap than the surrounding material and create regions of reduced potential energy for charge carriers. Electron-hole pairs are trapped there and recombine with emission of light, instead of diffusing to crystal defects where the recombination is non-radiative.

The emitted wavelength, dependent on the material's band gap, can be controlled by the GaN/InN ratio, from near ultraviolet for 0.02In/0.98Ga through 390 nm for 0.1In/0.9Ga, violet-blue 420 nm for 0.2In/0.8Ga, to blue 440 nm for 0.3In/0.7Ga, to red for higher ratios and also by the thickness of the InGaN layers which are typically in the range of 2–3 nm.

InGaN for solar photovoltaic applications

This defect tolerance, together with a good spectral match to sunlight, makes InGaN suitable for solar cells. It is possible to grow multiple layers with different bandgaps, as the material is relatively insensitive to defects introduced by a lattice mismatch between the layers. A two-layer multijunction cell with bandgaps of 1.1 eV and 1.7 eV can attain a theoretical 50% maximum efficiency, and by depositing multiple layers tuned to a wide range of bandgaps an efficiency up to 70% is theoretically expected.[2]

Significant photoresponse was obtained from experimental InGaN single-junction devices.[3][4] In addition to band gap engineering, photovoltaic device performance can be improved by engineering the microstructure of the material to increase the optical path length and provide light trapping. Growing nanocolumns on the device can further result in resonant interaction with light,[5] and InGaN nanocolumns have been successfully deposited on SiO2 using plasma enhanced evaporation.[6].

Other

Quantum heterostructures are often built from GaN with InGaN active layers. InGaN can be combined with other materials, e.g. GaN, AlGaN, on SiC, sapphire and even silicon.

Safety and toxicity

The toxicology of InGaN has not been fully investigated. The dust is an irritant to skin, eyes and lungs. The environment, health and safety aspects of indium gallium nitride sources (such as trimethylindium, trimethylgallium and ammonia) and industrial hygiene monitoring studies of standard MOVPE sources have been reported recently in a review.[7]

See also

References

  1. ^ V. Kachkanov, K.P. O’Donnell, S. Pereira, R.W. Martin (2007). Phil. Mag. 87 (13): 1999–2017. doi:10.1080/14786430701342164. 
  2. ^ A nearly perfect solar cell, part 2. Lbl.gov. Retrieved on 2011-11-07.
  3. ^ Zeng, S. W. et al. "Substantial photo-response of InGaN p–i–n homojunction solar cells" Semicond. Sci. Technol. 2009, 24, 055009 doi:10.1088/0268-1242/24/5/055009.
  4. ^ Sun, X. et al. Photoelectric characteristics of metal/InGaN/GaN heterojunction structure J. Phys. D 2008, 41, 165108 doi:10.1088/0022-3727/41/16/165108.
  5. ^ Cao, L. et al. "Engineering light absorption in semiconductor nanowire devices" Nat. Mater. 2009, 8, 643 doi:10.1038/nmat2477.
  6. ^ S. Keating, M.G. Urquhart, D.V.P. McLaughlin and J.M. Pearce (2011). "Effects of Substrate Temperature on Indium Gallium Nitride Nanocolumn Crystal Growth". Crystal Growth & Design 11 (2): 565–568. doi:10.1021/cg101450n. http://qspace.library.queensu.ca/handle/1974/6430. 
  7. ^ D V Shenai-Khatkhate, R Goyette, R L DiCarlo and G Dripps (2004). "Environment, health and safety issues for sources used in MOVPE growth of compound semiconductors". Journal of Crystal Growth: 816–821. doi:10.1016/j.jcrysgro.2004.09.007.