IEEE 1284

IEEE 1284 is a standard that defines bi-directional parallel communications between computers and other devices.

Contents

History

In the 1970s, Centronics developed the now-familiar printer parallel port that soon became a de facto standard. The original standard became non-standard itself as enhanced versions of the interface were developed, such as the HP Bitronics implementation released in 1992. In 1991 the Network Printing Alliance was formed to develop a new standard. In March 1994, the IEEE 1284 specification was released.

Overview

The IEEE 1284 standard allows for faster throughput and bidirectional data flow with a theoretical maximum throughput of 4 megabytes per second; actual throughput is around 2 megabytes/second, depending on hardware. In the printer venue, this allows for faster printing and back-channel status and management. Since the new standard allowed the peripheral to send large amounts of data back to the host, devices that had previously used SCSI interfaces could be produced at a much lower cost. This included scanners, tape drives, hard disks, computer networks connected directly via parallel interface, network adapters and other devices. No longer was the consumer required to purchase an expensive SCSI card—they could simply use their built-in parallel interface. These low-cost devices provided a platform to leapfrog the faster USB interface into its present popularity, displacing the parallel devices. However, the parallel interface remains highly popular in the printer industry, with displacement by USB only in consumer models.

IEEE 1284 modes

IEEE 1284 can operate in five modes:

Most recent computers that include a parallel port can operate the port in ECP or EPP mode, or both simultaneously.

IEEE-1284 requires that bi-directional device communication is always initiated in Nibble Mode. If the host receives no reply in this mode, it will assume that the device is a legacy printer, and enter Compatibility Mode. Otherwise, the best mode that is supported on both sides of the connection is negotiated between the host and client devices by exchanging standardized Nibble Mode messages.

IEEE 1284 connectors and cables

An IEEE-compliant cable must meet several standards of wiring and quality. Three types of connectors are defined:

There are two kinds of IEEE 1284 cables:

In IEEE 1284 Daisy Chain Specification, up to 8 devices can be connected to a single parallel port.

All modes use TTL voltage logic levels, which limits the possible cable length to a few meters unless expensive special cables are used.[3]

For detailed specifications, including pinouts, refer to the links below.

IEEE 1284 standards

IEEE 1284 typical color codes

Here are the typical colors found on 25-pin IEEE 1284 cable leads.

Pin Color Alt Color
1 red
2 pink/red
3 brown
4 orange
5 light-blue/yellow
6 light-blue/red
7 light-blue
8 blue
9 light-blue/black green/blue
10 green
11 yellow
12 pink/orange
13 gray
14 gray/green
15 pink/blue orange/white
16 pink/black brown/white
17 light blue/blue light blue/green
18 blue-white
19 green/black green/red
20 pink/white yellow/black
21 gray/black
22 white/black gray/yellow
23 purple
24 pink
25 white
NC white/yellow white/green
All white/purple red/black

See also

References

  1. ^ EP 0640229  Buxton, C.L. / Kohtz, R.A. / Zenith Data Systems Corp.: Enhanced parallel port. filing date May 15, 1992
  2. ^ Lava - IEEE 1284: Parallel Ports
  3. ^ IBM Parallel Port FAQ/Tutorial

External links

Interrupt list related to the EPP BIOS calls: