Power-to-weight ratio (or specific power or power-to-mass ratio) is a calculation commonly applied to engines and mobile power sources to enable the comparison of one unit or design to another. Power-to-weight ratio is a measurement of actual performance of any engine or power sources. It is also used as a measurement of performance of a vehicle as a whole, with the engine's power output being divided by the weight (or mass) of the vehicle, to give a metric that is independent of the vehicle's size. Power-to-weight is often quoted by manufacturers at the peak value, but the actual value may vary in use and variations will affect performance.
The inverse of power-to-weight, weight-to-power ratio (power loading) is a calculation commonly applied to aircraft, cars, and vehicles in general, to enable the comparison of one vehicle performance to another. Power-to-weight ratio is equal to powered acceleration multiplied by the velocity of any vehicle.
Contents |
The power-to-weight ratio (Specific Power) formula for an engine (power plant) is the power generated by the engine divided by weight of the engine as follows:
A typical turbocharged V8 diesel engine might have an engine power of 330 horsepower (250 kW) and a weight of 835 pounds (379 kg),[1] giving it a power-to-weight ratio of 0.65 kW/kg (0.40 hp/lb).
Examples of high power-to-weight ratios can often be found in turbines. This is because of their ability to operate at very high speeds. For example, the Space Shuttle's main engines use turbopumps (machines consisting of a pump driven by a turbine engine) to feed the propellants (liquid oxygen and liquid hydrogen) into the engine's combustion chamber. The original liquid hydrogen turbopump is similar in size to an automobile engine (weighing approximately 775 pounds (352 kg)) and produces 72,000 hp (53.6 MW)[2] for a power-to-weight ratio of 153 kW/kg (93 hp/lb).
In classical mechanics, instantaneous power is the limiting value of the average rate of change of work done per unit time as the time interval Δt approaches zero.
If the work to be done is rectilinear motion of a body with constant mass , whose center of mass is to be accelerated along a straight line to a speed and angle with respect to the centre and radial of a gravitational field by an onboard powerplant, then the associated kinetic energy to be delivered to the body is equal to
where:
The instantaneous mechanical pushing/pulling power delivered to the body from the powerplant is then
where:
Along an obstacle free positive inclined straight road steering an automobile straight ahead, positive linear acceleration will change the speed but not the direction of the vehicle.
The weight of the body is the force applied to the body to support it at rest in a uniform gravitational field, g. Using Newton's Second Law of Motion, then
where:
For large changes in altitude or with a body of mass significant when compared with the gravitational field source mass, then the gravitational field may no longer be considered uniform and therefore g also changes with time.
The torque from the powerplant is accelerating the body to a desired velocity of motion while lifting the weight of the body, overcoming friction through the powerplant and upon the surface of the body (e.g. rolling resistance and skin friction), and overcoming other drag from the motion of the body through fluids (e.g. air, water). The degree in which the deliverable torque associated with the body overcomes the force of gravity upon the body and yields a net positive linear climbing acceleration, or mechanical advantage, is then
where:
If the friction and drag loses are negligible, then the powerplant will convert essentially all its power to either delivering kinetic energy to the body or lifting the weight of the body. To meet this ideal, techniques include low rolling resistance tyres, sufficient tyre inflation, obstacle free path, straight asphalt road, low automotive aerodynamic drag area, well lubricated powertrain and a low loss mechanical transmission to run the engine at a speed that corresponds with the engine peak output power. The mechanical advantage is then simply
Power is only delivered if the powerplant is in motion, and is transmitted to cause the body to be in motion. It is typically assumed here that mechanical transmission allows the powerplant to operate at peak output power. This assumption allows engine tuning to trade power band width and engine mass for transmission complexity and mass. Electric motors do not suffer from this tradeoff. The power advantage or power-to-weight ratio is then
where:
Power-to-weight ratio is relative to a uniform gravitational field. Normalising to any arbitrary gravitational field yields the specific power or power-to-mass ratio which is then
The power-to-weight ratio is typically calculated from power and mass, although mass is usually measured as weight on a calibrated weighing scale. Values are then expressed in units power per unit force exerted on unit mass in standard gravity. Use of kg (kilogram) and lb (pound) rather than kgf (kilogram-force), SI unit N (Newton) or lbf (pound-force) is common. The value thus expressed is the power-to-mass ratio and not the power-to-weight ratio.
The actual useful power of any traction engine can be calculated using a dynamometer to measure torque and rotational speed, with peak power sustained when transmission and/or operator keeps the product of torque and rotational speed maximised. For jet engines there is often a cruise speed and power can be usefully calculated there, for rockets there is typically no cruise speed, so it is less meaningful.
Peak power of a traction engine occurs at a rotational speed higher than the speed when torque is maximised and below the maximum rated rotational speed - Max RPM. A rapidly falling torque curve would correspond with sharp torque and power curve peaks around their maxima at similar rotational speed, for example a small, lightweight engine with a large turbocharger. A slowing falling or near flat torque curve would correspond with a slowly rising power curve up to a maximum at a rotational speed close to Max RPM, for example a large, heavy multi-cylinder engine suitable for cargo/hauling. A falling torque curve could correspond with a near flat power curve across rotational speeds for smooth handling at different vehicle speeds.
Thermal energy is made up from molecular kinetic energy and latent phase energy. Heat engines are able to convert thermal energy in the form of a temperature gradient between a hot source and a cold sink into other desirable mechanical work. Heat pumps take mechanical work to regenerate thermal energy in a temperature gradient.
An electric motor uses electrical energy to provide mechanical work, usually through the interaction of a magnetic field and current-carrying conductors. By the interaction of mechanical work on an electrical conductor in a magnetic field, electrical energy can be generated.
Electric motor type | Weight | Peak Power Output | Power-to-weight ratio | Example Use | |||
---|---|---|---|---|---|---|---|
Panasonic MSMA202S1G AC servo motor[18] | 6.5 kg | 14.3 lb | 2 kW | 2.7 hp | 0.31 kW/kg | 0.19 hp/lb | Conveyor belts, Robotics |
Toshiba 660 MVA water cooled 23kV AC turbo generator | 1,342 t | 2,959,000 lb | 660 MW | 885,000 hp | 0.49 kW/kg | 0.30 hp/lb | Bayswater, Eraring Coal Power stations |
Canopy Tech. Cypress 32 MW 15 kV AC PM generator[19] | 33,557 kg | 73,981 lb | 32 MW | 42,913 hp | 0.95 kW/kg | 0.58 hp/lb | Electric Power stations |
Toyota Brushless AC Nd Fe B PM motor[20] | 36.3 kg | 80.0 lb | 50 kW | 67 hp | 1.37 kW/kg | 0.84 hp/lb | Toyota Prius[•] 2004 |
Himax HC6332-250 Brushless DC motor[21] | 0.45 kg | 0.99 lb | 1.7 kW | 2.28 hp | 3.78 kW/kg | 2.30 hp/lb | Radio controlled cars |
Hi-Pa Drive HPD40 Brushless DC wheel hub motor[22] | 25 kg | 55.1 lb | 120 kW | 161 hp | 4.8 kW/kg | 2.92 hp/lb | Mini QED HEV, Ford F150 HEV |
ElectriFly GPMG4805 Brushless DC[23] | 1.48 kg | 3.26 lb | 8.4 kW | 11.26 hp | 5.68 kW/kg | 3.45 hp/lb | Radio-controlled aircraft |
Fluids (liquid and gas) can be used to transmit and/or store energy using pressure and other fluid properties. Hydraulic (liquid) and pneumatic (gas) engines convert fluid pressure into other desirable mechanical or electrical work. Fluid pumps convert mechanical or electrical work into movement or pressure changes of a fluid, or storage in a pressure vessel.
Fluid Powerplant type | Dry Weight | Peak Power Output | Power-to-weight ratio | |||
---|---|---|---|---|---|---|
PlatypusPower Q2/200 hydroelectric turbine[24] | 43 kg | 95 lb | 2 kW | 2.7 hp | 0.047 kW/kg | 0.029 hp/lb |
PlatypusPower PP20/200 hydroelectric turbine[24] | 330 kg | 728 lb | 20 kW | 27 hp | 0.060 kW/kg | 0.037 hp/lb |
Atlas Copco LZL 35 pneumatic motor[25] | 20 kg | 44.1 lb | 6.5 kW | 8.7 hp | 0.33 kW/kg | 0.20 hp/lb |
Atlas Copco LZB 14 pneumatic motor[26] | 0.30 kg | 0.66 lb | 0.16 kW | 0.22 hp | 0.53 kW/kg | 0.33 hp/lb |
Bosch 0 607 954 307 pneumatic motor[27] | 0.32 kg | 0.71 lb | 0.1 kW | 0.13 hp | 0.31 kW/kg | 0.19 hp/lb |
Atlas Copco LZB 46 pneumatic motor[28] | 1.2 kg | 2.65 lb | 0.84 kW | 1.13 hp | 0.7 kW/kg | 0.43 hp/lb |
Bosch 0 607 957 307 pneumatic motor[27] | 1.7 kg | 3.7 lb | 0.74 kW | 0.99 hp | 0.44 kW/kg | 0.26 hp/lb |
SAI GM7 radial piston hydraulic motor[29] | 300 kg | 661 lb | 250 kW | 335 hp | 0.83 kW/kg | 0.50 hp/lb |
SAI GM3 radial piston hydraulic motor[30] | 15 kg | 33 lb | 15 kW | 20 hp | 1 kW/kg | 0.61 hp/lb |
A variety of effects can be harnessed to produce thermoelectricity, thermionic emission, pyroelectricity and piezoelectricity. Electrical resistance and ferromagnetism of materials can be harnessed to generate thermoacoustic energy from an electric current.
Thermoelectric Powerplant type | Dry Weight | Peak Power Output | Power-to-weight ratio | Example Use | |||
---|---|---|---|---|---|---|---|
Teledyne 238Pu GPHS-RTG 1980[31][32] | 56 kg | 123 lb | 285 We | 0.39 hp | 5.09 W/kg | 0.003 hp/lb | Galileo probe, New Horizons probe |
Boeing 238Pu MMRTG MSL[32] | 44.1 kg | 97.2 lb | 123 We | 0.16 hp | 2.79 W/kg | 0.002 hp/lb | Mars Science Laboratory |
All electrochemical cell batteries deliver a changing voltage as their chemistry changes from "charged" to "discharged". A nominal output voltage and a cutoff voltage are typically specified for a battery by its manufacturer. The output voltage falls to the cutoff voltage when the battery becomes "discharged". The nominal output voltage is always less than the open-circuit voltage produced when the battery is "charged". The temperature of a battery can affect the power it can deliver, where lower temperatures reduce power. Total energy delivered from a single charge cycle is affected by both the battery temperature and the power it delivers. If the temperature lowers or the power demand increases, the total energy delivered at the point of "discharge" is also reduced.
Battery discharge profiles are often described in terms of a factor of battery capacity. For example a battery with a nominal capacity quoted in ampere-hours (Ah) at a C/10 rated discharge current (derived in amperes) may safely provide a higher discharge current - and therefore higher power-to-weight ratio - but only with a lower energy capacity. Power-to-weight ratio for batteries is therefore less meaningful without reference to corresponding energy-to-weight ratio and cell temperature.
Battery type | Volts | Temp. | Energy-to-weight ratio | Power-to-weight ratio |
---|---|---|---|---|
Energizer 675 Mercury Free Zinc-air battery[33] | 1.4V | 21 °C | 1,645 kJ/kg to 0.9 V | 1.65 W/kg 2.24 mA |
GE Durathon™ NaMx A2 UPS Molten salt battery[34] | 54.2V | -40–65°C | 342 kJ/kg to 37.8 V | 15.8 W/kg C/6 (76 A) |
Panasonic R03 AAA Zinc–carbon battery[35][36] | 1.5 V | 20±2 °C | 47 kJ/kg 20 mA to 0.9 V | 3.3 W/kg 20 mA |
88 kJ/kg 150 mA to 0.9 V | 24 W/kg 150 mA | |||
Eagle-Picher SAR-10081 60Ah 22-cell Nickel–hydrogen battery[37] | 27.7 V | 10 °C | 192 kJ/kg C/2 to 22 V | 23 W/kg C/2 |
165 kJ/kg C/1 to 22 V | 46 W/kg C/1 | |||
ClaytonPower 400Ah Lithium-ion battery[38][39] | 12V | 617 kJ/kg | 85.7 W/kg C/1 (175 A) | |
Energizer 522 Prismatic Zn–MnO2 Alkaline battery[40] | 9 V | 21 °C | 444 kJ/kg 25 mA to 4.8 V | 4.9 W/kg 25 mA |
340 kJ/kg 100 mA to 4.8 V | 19.7 W/kg 100 mA | |||
221 kJ/kg 500 mA to 4.8 V | 99 W/kg 500 mA | |||
Panasonic HHR900D 9.25Ah Nickel–metal hydride battery[41] | 1.2 V | 20 °C | 209.65 kJ/kg to 0.7 V | 11.7 W/kg C/5 |
58.2 W/kg C/1 | ||||
116 W/kg 2C | ||||
URI 1418Ah replaceable anode Aluminium–air battery model[42][43] | 244.8 V | 60 °C | 4680 kJ/kg | 130.3 W/kg (142 A) |
LG Chemical/CPI E2 6Ah LiMn2O4 Lithium-ion polymer battery[44][45] | 3.8 V | 25 °C | 530.1 kJ/kg C/2 to 3.0 V | 71.25 W/kg |
513 kJ/kg 1C to 3.0 V | 142.5 W/kg | |||
Saft 45E Fe Super-Phosphate Lithium iron phosphate battery[46] | 3.3 V | 25 °C | 581 kJ/kg C to 2.5 V | 161 W/kg |
560 kJ/kg 1.14 C to 2.0 V | 183 W/kg | |||
0.73 kJ/kg 2.27 C to 1.5 V | 367 W/kg | |||
Energizer CH35 C 1.8Ah Nickel–cadmium battery[47] | 1.2 V | 21 °C | 152 kJ/kg C/10 to 1 V | 4 W/kg C/10 |
147.1 kJ/kg 5C to 1 V | 200 W/kg 5 C | |||
Firefly Energy Oasis FF12D1-G31 6-cell 105Ah VRLA battery[48] | 12 V | 25 °C | 142 kJ/kg C/10 to 7.2 V | 4 W/kg C/10 |
-1 8 °C | 7 kJ/kg CCA to 7.2V | 234 W/kg CCA (625A) | ||
0 °C | 9 kJ/kg CA to 7.2 V | 300 W/kg CA (800 A) | ||
Panasonic CGA103450A 1.95Ah LiCoO2 Lithium-ion battery[49] | 3.7 V | 20 °C | 666 kJ/kg C/5.3 to 2.75 V | 35 W/kg C/5.3 |
0 °C | 633 kJ/kg C/1 to 2.75 V | 176 W/kg C/1 | ||
20 °C | 655 kJ/kg C/1 to 2.75 V | 182 W/kg C/1 | ||
20 °C | 641 kJ/kg 2C to 2.75 V | 356 W/kg 2C | ||
Electric Fuel Battery Corp. UUV 120Ah Zinc–air fuel cell[50] | 630 kJ/kg | 500 W/kg C/1 | ||
Sion Power 2.5Ah Li–S Lithium-ion battery[51] | 2.15 V | 25 °C | 1260 kJ/kg | 70 W/kg C/5 |
1209 kJ/kg | 672 W/kg 2C | |||
Maxell / Yuasa / AIST Nickel–metal hydride lab prototype[52] | 45 °C | 980 W/kg | ||
Toshiba SCiB cell 4.2Ah Li2TiO3 Lithium-ion battery[53][54] | 2.4 V | 25 °C | 242 kJ/kg | 67.2 W/kg C/1 |
218 kJ/kg | 4000 W/kg 12C | |||
Ionix Power Systems LiMn2O4 Lithium-ion battery lab model[55] | lab | 270 kJ/kg | 1700 W/kg | |
lab | 29 kJ/kg | 4900 W/kg | ||
A123 Systems 26650 Cell 2.3Ah LiFePO4 Lithium ion battery[56][57] | 3.3 V | -20 °C | 347 kJ/kg C/1 to 2V | 108 W/kg C/1 |
0 °C | 371 kJ/kg C/1 to 2 V | 108 W/kg C/1 | ||
25 °C | 390 kJ/kg C/1 to 2 V | 108 W/kg C/1 | ||
25 °C | 390 kJ/kg 27C to 2 V | 3300 W/kg 27C | ||
25 °C | 57 kJ/kg 32C to 2 V | 5657 W/kg 32C | ||
Saft VL 6Ah Lithium-ion battery[58] | 3.65 V | -20 °C | 154 kJ/kg 30C to 2.5 V | 41.4 W/kg 30C (180 A) |
182 kJ/kg 1C to 2.5 V | 67.4 W/kg 1C | |||
25 °C | 232 kJ/kg 1C to 2.5 V | 64.4 W/kg 1C | ||
233 kJ/kg 58.3C to 2.5 V | 3757 W/kg 58.3C (350A) | |||
34 kJ/kg 267C to 2.5 V | 17176 W/kg 267C (1.6kA) | |||
4.29 kJ/kg 333C to 2.5 V | 21370 W/kg 333C (2kA) |
Capacitors store electric charge onto two electrodes separated by an electric field semi-insulating (dielectric) medium. Electrostatic capacitors feature planar electrodes onto which electric charge accumulates. Electrolytic capacitors use a liquid electrolyte as one of the electrodes and the electric double layer effect upon the surface of the dielectric-electrolyte boundary to increase the amount of charge stored per unit volume. Electric double-layer capacitors extend both electrodes with a nanopourous material such as activated carbon to significantly increase the surface area upon which electric charge can accumulate, reducing the dielectric medium to nanopores and a very thin high permittivity separator.
While capacitors tend not to be as temperature sensitive as batteries, they are significantly capacity constrained and without the strength of chemical bonds suffer from self-discharge. Power-to-weight ratio of capacitors is usually higher than batteries because charge transport units within the cell are smaller (electrons rather than ions), however energy-to-weight ratio is conversely usually lower.
Capacitor type | Capacity | Volts | Temp. | Energy-to-weight ratio | Power-to-weight ratio |
---|---|---|---|---|---|
ACT Premlis Lithium ion capacitor[59] | 2000 F | 4.0 V | 25 °C | 54 kJ/kg to 2.0 V | 44.4 W/kg @ 5 A |
31 kJ/kg to 2.0 V | 850 W/kg @ 10 A | ||||
Nesccap Electric double-layer capacitor[60] | 5000 F | 2.7 V | 25 °C | 19.58 kJ/kg to 1.35 V | 5.44 W/kg C/1 (1.875 A) |
5.2 kJ/kg to 1.35 V | 5,200 W/kg[61] @ 2,547A | ||||
EEStor EESU barium titanate supercapacitor[62] | 30.693 F | 3500 V | 85 °C | 1471.98 kJ/kg | 80.35 W/kg C/5 |
1471.98 kJ/kg | 8,035 W∕kg 20 C |
Fuel cells and flow cells, although perhaps using similar chemistry to batteries, have the distinction of not containing the energy storage medium or fuel. With a continuous flow of fuel and oxidant, available fuel cells and flow cells continue to convert the energy storage medium into electric energy and waste products. Fuel cells distinctly contain a fixed electrolyte whereas flow cells also require a continuous flow of electrolyte. Flow cells typically have the fuel dissolved in the electrolyte.
Fuel cell type | Dry weight | Power-to-weight ratio | Example Use |
---|---|---|---|
Redflow Power+BOS ZB600 10kWh ZBB[63] | 900 kg | 5.6 W/kg (9.3 W/kg peak) | Rural Grid support |
Ceramic Fuel Cells BlueGen MG 2.0 CHP SOFC[64] | 200 kg | 10 W/kg | |
15 W/kg CHP | |||
MTU Friedrichshafen 240 kW MCFC HotModule 2006 | 20 t | 12 W/kg | |
Smart Fuel Cell Jenny 600S 25W DMFC[65] | 1.7 kg | 14.7 W/kg | Portable military electronics |
UTC Power PureCell 400 kW PAFC[66] | 27,216 kg | 14.7 W/kg | |
GEFC 50V50A-VRB Vanadium redox battery[67] | 80 kg | 31.3 W/kg (125 W/kg peak) | |
Ballard Power Systems Xcellsis HY-205 205 kW PEMFC[68] | 2,170 kg | 94.5 W/kg | Mercedes-Benz Citaro O530BZ[•] |
UTC Power/NASA 12 kW AFC[69] | 122 kg | 98 W/kg | Space Shuttle orbiter[•] |
Ballard Power Systems FCgen-1030 1.2 kW CHP PEMFC[70] | 12 kg | 100 W/kg | Residential cogeneration |
Ballard Power Systems FCvelocity-HD6 150 kW PEMFC[70] | 400 kg | 375 W/kg | Bus and heavy duty |
Honda 2003 43 kW FC Stack PEMFC[71][•] | 43 kg | 1000 W/kg | Honda FCX Clarity[•] |
Lynntech, Inc. PEMFC lab prototype[72] | 347 g | 1,500 W/kg |
Photovoltaic Panel type | Power-to-weight ratio |
---|---|
Thyssen Solartec 128W Nanocrystalline Si Triplejunction PV module[73] | 6 W/kg |
Suntech/UNSW HiPerforma PLUTO220-Udm 220W Ga-F22 Polycrystalline Si PV module[74] | 13.1 W/kg STP |
9.64 W/kg nominal | |
Global Solar PN16015A 62W CIGS polycrystalline thin film PV module[75] | 40 W/kg |
Able (AEC) PUMA 6 kW GaInP2/GaAs/Ge-on-Ge Triplejunction PV array[76] | 65 W/kg |
Current spacecraft grade | ~77 W/kg[77] |
ITO/InP on Kapton foil | 2000 W/kg[78] |
Power-to-weight ratios for vehicles are usually calculated using Curb weight (for cars) or wet weight (for motorcycles) – in other words, excluding weight of the driver and any cargo. This could be slightly misleading, especially with regard to motorcycles, where the driver might weigh 1/3 to 1/2 as much as the vehicle itself. In the sport of competitive cycling athlete's performance is increasingly being expressed in VAMs and thus as a power-to-weight ratio in W/kg. This can be measured through the use of a bicycle powermeter or calculated from measuring incline of a road climb and the rider's time to ascend it.[79]
Most vehicles are designed to meet passenger comfort and cargo carrying requirements. Different designs trade off power-to-weight ratio to increase comfort, cargo space, fuel economy, emissions control, energy security and endurance. Reduced drag and lower rolling resistance in a vehicle design can facilitate increased cargo space without increase in the (zero cargo) power-to-weight ratio. This increases the role flexibility of the vehicle. Energy security considerations can trade off power (typically decreased) and weight (typically increased), and therefore power-to-weight ratio, for fuel flexibility or drive-train hybridisation. Some utility and practical vehicle variants such as hot hatches and sports-utility vehicles reconfigure power (typically increased) and weight to provide the perception of sports car like performance or for other psychological benefit.
Vehicle | Power | Weight | Power-to-weight ratio |
---|---|---|---|
Benz Patent Motorwagen 954 cc 1886[80] | 560 W / 0.75 bhp | 265 kg / 584 lb | 2.1 W/kg / 779 lb/hp |
Stephenson's Rocket 0-2-2 steam locomotive with tender 1829[81] | 15 kW / 20 bhp | 4,320 kg / 9524 lb | 3.5 W/kg / 476 lb/hp |
CBQ Zephyr streamliner diesel locomotive with railcars 1934[82] | 492 kW / 660 bhp | 94 t / 208,000 lb | 5.21 W/kg / 315 lb/hp |
Alberto Contador's Verbier climb 2009 Tour de France on Specialized bike[79] | 420 W / 0.56 bhp | 62 kg / 137 lb | 6.7 W/kg / 245 lb/hp |
Force Motors Minidor Diesel 499 cc auto rickshaw[83][84] | 6.6 kW / 8.8 bhp | 700 kg / 1543 lb | 9 W/kg / 175 lb/hp |
PRR Q2 4-4-6-4 steam locomotive with tender 1944 | 5,956 kW / 7,987 bhp | 475.9 t / 1,049,100 lb | 12.5 W/kg / 131 lb/hp |
Mercedes-Benz Citaro O530BZ H2 fuel cell bus 2002[85] | 205 kW / 275 bhp | 14,500 kg / 32,000 lb | 14.1 W/kg / 116 lb/hp |
TGV BR Class 373 high-speed electric locomotive 1993 | 12,240 kW / 16,414 bhp | 816 t / 1,798,972 lb | 15 W/kg / 110 lb/hp |
General Dynamics M1 Abrams Main battle tank 1980[86] | 1,119 kW / 1500 bhp | 55.7 t / 122,800 lb | 20.1 W/kg / 81.9 lb/hp |
BR Class 43 high-speed diesel electric locomotive 1975 | 1,678 kW / 2,250 bhp | 70.25 t / 154,875 lb | 23.9 W/kg / 69 lb/hp |
GE AC6000CW diesel electric locomotive 1996 | 4,660 kW / 6,250 bhp | 192 t / 423,000 lb | 24.3 W/kg / 68 lb/hp |
BR Class 55 Napier Deltic diesel electric locomotive 1961 | 2,460 kW / 3,300 bhp | 101 t / 222,667 lb | 24.4 W/kg / 68 lb/hp |
International CXT 2004[87] | 164 kW / 220 bhp | 6,577 kg / 14500 lb | 25 W/kg / 66 lb/hp |
Ford Model T 2.9 L flex-fuel 1908 | 15 kW / 20 bhp | 540 kg / 1,200 lb | 28 W/kg / 60 lb/hp |
TH!NK City 2008[88] | 30 kW / 40 bhp | 1038 kg / 2,288 lb | 28.9 W/kg / 56.9 lb/hp |
Messerschmitt KR200 Kabinenroller 191 cc 1955 | 6 kW / 8.2 bhp | 230 kg / 506 lb | 30 W/kg / 50 lb/hp |
Wright Flyer 1903 | 9 kW / 12 bhp | 274 kg / 605 lb | 33 W/kg / 50 lb/hp |
Tata Nano 624 cc 2008 | 26 kW / 35 bhp | 635 kg / 1,400 lb | 41.0 W/kg / 40 lb/hp |
Bombardier JetTrain high-speed gas turbine-electric locomotive 2000[89] | 3,750 kW / 5,029 bhp | 90,750 kg / 200,000 lb | 41.2 W/kg / 39.8 lb/hp |
Suzuki MightyBoy 543 cc 1988 | 23 kW / 31 bhp | 550 kg / 1,213 lb | 42 W/kg / 39 lb/hp |
Mitsubishi i MiEV 2009[90] | 47 kW / 63 bhp | 1,080 kg / 2,381 lb | 43.5 W/kg / 37.8 lb/hp |
Holden FJ 2,160 cc 1953[91] | 44.7 kW / 60 bhp | 1,021 kg / 2,250 lb | 43.8 W/kg / 37.5 lb/hp |
Chevrolet Kodiak/GMC Topkick LYE 6.6 L 2005[1][92] | 246 kW / 330 bhp | 5126 kg / 11,300 lb | 48 W/kg / 34.2 lb/hp |
DOE/NASA/0032-28 Chevrolet Celebrity 502 cc ASE Mod II 1985[5] | 62.3 kW / 83.5 bhp | 1,297 kg / 2,860 lb | 48.0 W/kg / 34.3 lb/hp |
Suzuki Alto 796 cc 2000 | 35 kW / 46 bhp | 720 kg / 1,587 lb | 49 W/kg / 35 lb/hp |
Land Rover Defender 2.4 L 1990[93] | 90 kW / 121 bhp | 1,837 kg / 4,050 lb | 49 W/kg / 33 lb/hp |
Vehicle | Power | Weight | Power-to-weight ratio |
---|---|---|---|
Toyota Prius 1.8 L 2010 (petrol only)[94] | 73 kW / 98 bhp | 1,380 kg / 3,042 lb | 53 W/kg / 31 lb/hp |
Bajaj Platina Naked 100 cc 2006[95] | 6 kW / 8 bhp | 113 kg / 249 lb | 53 W/kg / 31 lb/hp |
Subaru R2 type S 2003[96] | 47 kW / 63 bhp | 830 kg / 1,830 lb | 57 W/kg / 29 lb/hp |
Ford Fiesta ECOnetic 1.6 L TDCi 5dr 2009[97] | 66 kW / 89 bhp | 1,155 kg / 2,546 lb | 57 W/kg / 29 lb/hp |
Volvo C30 1.6D DRIVe S/S 3dr Hatch 2010[98] | 80 kW / 108 bhp | 1,347 kg / 2,970 lb | 59.4 W/kg / 27.5 lb/hp |
Ford Focus ECOnetic 1.6 L TDCi 5dr Hatch 2009[99] | 81 kW / 108 bhp | 1,357 kg / 2,992 lb | 59.7 W/kg / 27 lb/hp |
Ford Focus 1.8 L Zetec S TDCi 5dr Hatch 2009[100] | 84 kW / 113 bhp | 1,370 kg / 3,020 lb | 61 W/kg / 27 lb/hp |
Honda FCX Clarity 4 kg Hydrogen 2008[101] | 100 kW / 134 bhp | 1,600 kg / 3,528 lb | 63 W/kg / 26 lb/hp |
Hummer H1 6.6 L V8 2006[102] | 224 kW / 300 bhp | 3,559 kg / 7,847 lb | 63 W/kg / 26 lb/hp |
Audi A2 1.4 L TDI 90 type S 2003[103] | 66 kW / 89 bhp | 1,030 kg / 2,270 lb | 64 W/kg / 25 lb/hp |
Opel/Vauxhall/Holden/Chevrolet Astra 1.7 L CTDi 125 2010[104] | 92 kW / 123 bhp | 1,393 kg / 3,071 lb | 66 W∕kg / 24.9 lb∕hp |
Mini (new) Cooper 1.6D 2007[105] | 81 kW / 108 bhp | 1,185 kg / 2,612 lb | 68 W/kg / 24 lb/hp |
Toyota Prius 1.8 L 2010 (electric boost)[94] | 100 kW / 134 bhp | 1,380 kg / 3,042 lb | 72 W/kg / 23 lb/hp |
Ford Focus 2.0 L Zetec S TDCi 5dr Hatch 2009[106] | 100 kW / 134 bhp | 1,370 kg / 3,020 lb | 73 W/kg / 23 lb/hp |
Toyota Venza I4 2.7 L FWD 2009[107] | 136 kW / 182 bhp | 1,706 kg / 3,760 lb | 80 W/kg / 20.7 lb/hp |
Ford Focus 2.0 L Zetec S 5dr Hatch 2009[108] | 107 kW / 143 bhp | 1,327 kg / 2,926 lb | 81 W/kg / 20 lb/hp |
Fiat Grande Punto 1.6 L Multijet 120 2005[109] | 88 kW / 118 bhp | 1,075 kg / 2,370 lb | 82 W/kg / 20 lb/hp |
Mini (classic) 1275GT 1969 | 57 kW / 76 bhp | 686 kg / 1,512 lb | 83 W/kg / 20 lb/hp |
Opel/Vauxhall/Holden/Chevrolet Astra 2.0 L CTDi 160 2010[110] | 118 kW / 158 bhp | 1,393 kg / 3,071 lb | 85 W∕kg / 19.4 lb∕hp |
Subaru Legacy/Liberty 2.0R 2005[111] | 121 kW / 162 bhp | 1,370 kg / 3,020 lb | 88 W/kg / 19 lb/hp |
Subaru Outback 2.5i 2008[112] | 130.5 kW / 175 bhp | 1,430 kg / 3,153 lb | 91 W/kg / 18 lb/hp |
Smart Fortwo 1.0 L Brabus 2009[113] | 72 kW / 97 bhp | 780 kg / 1,720 lb | 92 W/kg / 18 lb/hp |
Ford Focus 2.0 auto 2007[114] | 104.4 kW / 140 bhp | 1,198 kg / 2,641 lb | 87.1 W/kg / 19 lb/hp |
Toyota Venza V6 3.5 L AWD 2009[107] | 200 kW / 268 bhp | 1,835 kg / 4,045 lb | 109 W/kg / 15 lb/hp |
Toyota Venza I4 2.7 L FWD 2009[107] with Lotus mass reduction[115] | 136 kW / 182 bhp | 1,210 kg / 2,667 lb | 112.2 W/kg / 14.7 lb/hp |
Toyota Hilux V6 DOHC 4 L 4×2 Single Cab Pickup ute 2009[116] | 175 kW / 235 bhp | 1,555 kg / 3,428 lb | 112.5 W/kg / 14.6 lb/hp |
Toyota Venza V6 3.5 L FWD 2009[107] | 200 kW / 268 bhp | 1,755 kg / 3,870 lb | 114 W/kg / 14.4 lb/hp |
Some utility and practical vehicles are designed for, as BMW would say,[117] sheer driving pleasure. Increased engine performance is a consideration, but also other features associated with luxury vehicles. Longitudinal engines are common. Bodies vary from hot hatches, sedans (saloons), coupés, convertibles and roadsters. Mid-range dual-sport and cruiser motorcycles tend to have similar power-to-weight ratios.
Vehicle | Power | Weight | Power-to-weight ratio |
---|---|---|---|
Mini (new) Cooper 1.6T S JCW 2008[118] | 155 kW / 208 bhp | 1205 kg / 2657 lb | 129 W/kg / 13 lb/hp |
Mazda RX-8 1.3 L Wankel 2003 | 173 kW / 232 bhp | 1309 kg / 2888 lb | 141 W/kg / 12 lb/hp |
Holden Statesman/Caprice / Buick Park Avenue / Daewoo Veritas 6 L V8 2007[119] | 270 kW / 362 bhp | 1891 kg / 4170 lb | 143 W/kg / 12 lb/hp |
Kawasaki KLR650 Gasoline DualSport 650 cc | 26 kW / 35 bhp | 182 kg / 401 lb | 143 W/kg / 11 lb/hp |
NATO HTC M1030M1 Diesel/Jet fuel DualSport 670 cc[120] | 26 kW / 35 bhp | 182 kg / 401 lb | 143 W/kg / 11 lb/hp |
Harley-Davidson FLSTF Softail Fat Boy Cruiser 1,584 cc 2009[121] | 47 kW / 63 bhp | 324 kg / 714 lb | 145 W/kg / 11.3 lb/hp |
BMW 7 Series 760Li 6 L V12 2006[122] | 327 kW / 439 bhp | 2250 kg / 4960 lb | 145 W/kg / 11 lb/hp |
Subaru Impreza WRX STi 2.0 L 2008[123] | 227 kW / 304 bhp | 1530 kg / 3373 lb | 148 W/kg / 11 lb/hp |
Honda S2000 roadster 1999 | 183.88 kW / 240 bhp | 1250 kg / 2723 lb | 150 W/kg / 11 lb/hp |
Ford Mustang 2005 4.0 L SOHC V6 | 231 kW / 310 bhp | 1497 kg / 3300 lb | 154 W/kg / 10.65 lb/hp |
GMH HSV Clubsport / GMV VXR8 / GMC CSV CR8 / Pontiac G8 6 L V8 2006[124] | 317 kW / 425 bhp | 1831 kg / 4037 lb | 173 W/kg / 9.5 lb/hp |
Tesla Roadster 2011[125] | 215 kW / 288 bhp | 1235 kg / 2723 lb | 174 W/kg / 9.5 lb/hp |
Power-to-weight ratio is an important vehicle characteristic that affects the acceleration and handling - and therefore the driving enjoyment - of any sports vehicle. Aircraft also depend on high power-to-weight ratio to achieve sufficient lift.
Vehicle | Power | Weight | Power-to-weight ratio |
---|---|---|---|
Lotus Elise SC 2008 | 163 kW / 218 bhp | 910 kg / 2006 lb | 179 W/kg / 9 lb/hp |
Ferrari Testarossa 1984 | 291 kW / 390 bhp | 1506 kg / 3320 lb | 193 W/kg / 9 lb/hp |
Artega GT[126] | 220 kW / 300 bhp | 1100 kg / 2425 lb | 200 W/kg / 8 lb/hp |
Lotus Exige GT3 2006[127] | 202.1 kW / 271 bhp | 980 kg / 2160 lb | 206 W/kg / 8 lb/hp |
Bombardier Dash 8 Q400 turboprop airliner[128] | 3,781 kW / 5,071 bhp | 17,185 kg / 37,888 lb | 220 W/kg / 7.5 lb/hp |
Chevrolet Corvette C6[129] | 321 kW / 430 bhp | 1441 kg / 3177 lb | 223 W/kg / 7 lb/hp |
Suzuki V-Strom 650 V-twin DualSport 650 cc | 50 kW / 67 bhp | 194 kg / 427 lb | 258 W/kg / 6.4 lb/hp |
Chevrolet Corvette C6 Z06[129] | 376 kW / 505 bhp | 1421 kg / 3133 lb | 265 W/kg / 6 lb/hp |
Porsche 911 GT2 2007 | 390 kW / 523 bhp | 1440 kg / 3200 lb | 271 W/kg / 6.1 lb/hp |
Lamborghini Murciélago LP 670-4 SV 2009[130] | 493 kW / 661 bhp | 1550 kg / 3417 lb | 318 W/kg / 5.1 lb/hp |
McLaren F1 GT 1997[131] | 467.6 kW / 627 bhp | 1220 kg / 2690 lb | 403 W/kg / 4 lb/hp |
Supermarine Spitfire Fighter aircraft 1936 | 1,096 kW / 1,470 bhp | 2,309 kg / 5,090 lb | 475 W/kg / 3.46 lb/hp |
Messerschmitt Bf 109 Fighter aircraft 1935 | 1,085 kW / 1,455 bhp | 2,247 kg / 4,954 lb | 483 W/kg / 3.40 lb/hp |
Thunderbolt Land speed record car | 3504 kW / 4700 bhp | 7 t / 15432 lb | 500 W/kg / 3.28 lb/hp |
Ferrari FXX 2005 | 597 kW / 801 bhp | 1155 kg / 2546 lb | 517 W/kg / 3.2 lb/hp |
Polaris Industries Assault Snowmobile 2009[132] | 115 kW / 154 bhp | 221 kg / 487 lb | 523 W/kg / 3.16 lb/hp |
Ultima GTR 720 2006[133] | 536.9 kW / 720 bhp | 920 kg / 2183 lb | 583 W/kg / 3 lb/hp |
Honda CBR1000RR 2009 | 133 kW / 178 bhp | 199 kg / 439 lb | 668 W/kg / 2.5 lb/hp |
Ariel Atom 500 V8 2011 | 372 kW / 500 bhp | 550 kg / 1212 lb | 676.3 W/kg / 2.45 lb/hp |
KillaCycle Drag racing electric motorcycle | 260 kW / 350 bhp | 281 kg / 619 lb | 925 W/kg / 1.77 lb/hp |
MTT Turbine Superbike 2008[134] | 213.3 kW / 286 bhp | 227 kg / 500 lb | 940 W/kg / 1.75 lb/hp |
Vyrus 987 C3 4V V supercharged motorcycle 2010[135] | 157.3 kW / 211 bhp | 158 kg / 348.3 lb | 996 W/kg / 1.65 lb/hp |
BMW Williams FW27 Formula One 2005[136] | 690 kW / 925 bhp | 600 kg / 1323 lb | 1150 W/kg / 1.43 lb/hp |
Honda RC211V MotoGP 2004-6 | 176.73 kW / 237 bhp | 148 kg / 326 lb | 1194 W/kg / 1.37 lb/hp |
Boeing 747-300[11] at Mach 0.84 cruise, 35,000 ft altitude | 245 MW / 328,656 bhp | 178.1 t / 392,800 lb | 1376 W/kg / 1.20 lb/hp |
John Force Racing Funny Car NHRA Drag Racing 2008[137] | 5,963.60 kW / 8,000 bhp | 1043 kg / 2,300 lb | 5717 W/kg / 0.30 lb/hp |
Some sports and aerospace vehicles are capable of exceeding the speed of sound. Vehicles in this class must account for transonic wave drag, shock waves and aerodynamic heating. Turbojet, turbofan, ramjet, afterburner and rocket propulsion is common. Note that with rockets and air breathing jet engines, vehicle power is proportional to vehicle speed, since rockets(and to a lesser extent air breathing jet engines) give a thrust that is completely independent of speed, this means that there is no upper limit to any particular rocket's power-to-weight ratio provided it has been given sufficient initial speed.
Vehicle | Power | Weight | Power-to-weight ratio |
---|---|---|---|
Space Shuttle Endeavour (OV-105)[17][138] | 190 MW / 255,000 bhp | 78 t / 172,000 lb | 2,437 W/kg / 0.7 lb/hp |
Aérospatiale/BAC Concorde 1969 at Mach 2.02 supercruise full thrust | 330 MW / 443,143 bhp | 78.7 t / 173,500 lb | 4,199 W/kg / 0.39 lb/hp |
Thrust Super Sonic Car | 82 MW / 110,000 bhp | 10.5 t / 23,149 lb | 7,812 W/kg / 0.21 lb/hp |
F-35 Lightning II Multirole combat aircraft 2006 at Mach 1.67 full thrust | 110 MW / 146,922 bhp | 13,300 kg / 29,300 lb | 8,238 W/kg / 0.20 lb/hp |
Sukhoi Su-35BM Multirole combat aircraft 2008 at Mach 2.25 full thrust | 188.5 MW / 252,842 bhp | 18,400 kg / 40,500 lb | 10,247 W/kg / 0.16 lb/hp |
Lockheed SR-71 Blackbird Surveillance aircraft 1966 at Mach 3.2, 290 kN thrust | 318.3 MW / 426,853 bhp | 30,600 kg / 67,461 lb | 10,402 W/kg / 0.16 lb/hp |
Sukhoi T-50 Stealth multirole fighter aircraft 2010 at Mach 2, 294 kN thrust | 201 MW / 270,620 bhp | 18,500 kg / 40,786 lb | 10,908 W/kg / 0.15 lb/hp |
F-22 Raptor Air superiority fighter aircraft 1990 at Mach 2.25, 312 kN thrust[139] | 241 MW / 323,088 bhp | 19,700 kg / 43,430 lb | 12,230 W/kg / 0.13 lb/hp |
Rockwell X-30 scramjet SSTO spaceplane 1986 at Mach 30, 1.4 MN thrust (proposed) | 14 GW / 19,300,000 bhp | 136 t / 300,000 lb | 105,740 W∕kg / 0.016 lb/hp |
Space Shuttle Endeavour (OV-105)[17][138] with SLWT and 2 SRBs[140][141][142] | 33 GW / 44,000,000 bhp | 280 t / 616,500 lb | 118,000 W/kg / 0.014 lb/hp |