Hill tetrahedron

In geometry, the Hill tetrahedra are a family of space-filling tetrahedra. They were discovered in 1896 by M.J.M. Hill, a professor of mathematics at the University College London, who showed that they are scissor-congruent to a cube.

Contents

Construction

For every \alpha \in (0,2\pi/3), let v_1,v_2,v_3 \in \Bbb R^3 be three unit vectors with angle \alpha between every two of them. Define the Hill tetrahedron Q(\alpha) as follows:

 Q(\alpha) \, = \, \{c_1 v_1%2Bc_2 v_2%2Bc_3 v_3 \mid  
0 \le c_1 \le c_2 \le c_3 \le 1\}.

A special case Q=Q(\pi/2) is the tetrahedron having all sides right triangles with sides 1, \sqrt{2} and \sqrt{3}. Ludwig Schläfli studied Q as a special case of the orthoscheme, and H.S.M. Coxeter called it the characteristic tetrahedron of the cubic spacefilling.

Properties

Generalizations

In 1951 Hugo Hadwiger found the following n-dimensional generalization of Hill tetrahedra:

 Q(w) \, = \, \{c_1 v_1%2B\cdots %2Bc_n v_n \mid  
0 \le c_1 \le \cdots \le c_n \le 1\},

where vectors v_1,\ldots,v_n satisfy (v_i,v_j) = w for all 1\le i< j\le n, and where -1/(n-1)< w < 1. Hadwiger showed that all such simplices are scissor congruent to a hypercube.

References

External links