E-UTRA

e-UTRAN or eUTRAN is the air interface of 3GPP's Long Term Evolution (LTE) upgrade path for mobile networks. It is the abbreviation for evolved UMTS Terrestrial Radio Access Network, also referred to as the 3GPP work item on the Long Term Evolution (LTE)[1] also known as the Evolved Universal Terrestrial Radio Access (E-UTRA) in early drafts of the 3GPP LTE specification.[1]

It is a radio access network standard meant to be a replacement of the UMTS, HSDPA and HSUPA technologies specified in 3GPP releases 5 and beyond. Unlike HSPA, LTE's E-UTRA is an entirely new air interface system, unrelated to and incompatible with W-CDMA. It provides higher data rates, lower latency and is optimized for packet data. It uses OFDMA radio-access for the downlink and SC-FDMA on the uplink. Trials started in 2008.

Contents

Features

EUTRAN has the following features:

Rationale for E-UTRA

Although UMTS, with HSDPA and HSUPA and their evolution, deliver high data transfer rates, wireless data usage is expected to continue increasing significantly over the next years due to the increase offering and demand of services and content on the move and the continued reduction of costs for the final user. This increase is expected to require not only faster networks and radio interfaces but also more cost efficient than what is possible by the evolution of the current standards. Thus the 3GPP consortium set the requirements for a new radio interface (EUTRAN) and core network evolution (System Architecture Evolution SAE) that would fulfill this need.

This improvements in performance allow wireless operators to offer quadruple play services - voice, high-speed interactive applications including large data transfer and feature-rich IPTV with full mobility.

Starting with the 3GPP Release 8, e-UTRA is designed to provide a single evolution path for the GSM/EDGE, UMTS/HSPA, CDMA2000/EV-DO and TD-SCDMA radio interfaces, providing increases in data speeds, and spectral efficiency, and allowing the provision of more functionality.

Architecture[3]

EUTRAN consists only of enodeBs on the network side. The enodeB performs tasks similar to those performed by the nodeBs and RNC (radio network controller) together in UTRAN. The aim of this simplification is to reduce the latency of all radio interface operations. eNodeBs are connected to each other via the X2 interface, and they connect to the packet switched (PS) core network via the S1 interface.

EUTRAN protocol stack

The EUTRAN protocol stack consist of [3]:

Interfacing layers to the EUTRAN protocol stack:

Physical layer (L1) design

E-UTRA uses orthogonal frequency-division multiplexing (OFDM), multiple-input multiple-output (MIMO) antenna technology depending on the terminal category and can use as well beamforming for the downlink to support more users, higher data rates and lower processing power required on each handset.[10] For the UL it uses both OFDM and Single Carrier FDMA (SC-FDMA) depending on the physical channel.

In the uplink LTE uses both OFDMA and a precoded version of OFDM called Single Carrier Frequency Division Multiple Access (SC-FDMA) depending on the channel. This is to compensate for a drawback with normal OFDM, which has a very high peak-to-average power ratio (PAPR). High PAPR requires more expensive and inefficient power amplifiers with high requirements on linearity, which increases the cost of the terminal and drains the battery faster. For the uplink, in release 8 and 9 multi user MIMO / Spatial division multiple access (SDMA) is supported; release 10 introduces also SU-MIMO.

In both OFDM and SCFDMA transmission modes a cyclic prefix is appended to the transmitted symbols. Two different lengths of the cyclic prefix are available to support different channel spreads due to the cell size and propagation environment. These are a normal cyclic prefix of 4.7µs, and a extended cyclic prefix of 16.6µs.

LTE supports both Frequency-division duplex (FDD) and Time-division duplex (TDD) modes. While FDD makes use of paired spectra for UL and DL transmission separated by a duplex frequency gap, TDD uses the same frequency carrier to, alternatively in time, transmit data from the base station to the terminal and viceversa. Both modes have its own frame structure within LTE and these are aligned with each other meaning that similar hardware can be used in the base stations and terminals to allow for economy of scale. The TDD mode in LTE is aligned with TD-SCDMA as well allowing for coexistence.

The LTE transmission is structured in the time domain in radio frames. Each of these radio frames is 10 ms long and consists of 10 sub frames of 1 ms each. For non-MBMS subframes the OFDM subcarrier spacing in the frequency domain is 15 kHz. Twelve of these subcarriers together are called a resource block. A LTE terminal can be allocated in the downlink or uplink a minimum of 1 resource block during 1 subframe.

All L1 transport data is encoded using turbo coding and a contention-free quadratic permutation polynomial (QPP) turbo code internal interleaver.[11] L1 HARQ with 8 (FDD) or up to 15 (TDD) processes is used for the downlink and up to 8 processes for the UL

EUTRAN physical channels and signals

Downlink (DL)

In the downlink there are several physical channels[12]:

And the following signals:

Uplink (UL)

In the uplink there are three physical channels:

And the following signals:

User Equipment (UE) categories

With 3GPP Release 10, eight LTE user equipment categories are defined[2] depending on the maximum peak data rate and MIMO capabilities support.

3GPP Release User Equipment Category Maximum L1 datarate Downlink Maximum number of DL MIMO layers Maximum L1 datarate Uplink
Release 8 Category 1 10.3 Mbits/s 1 5.2 Mbit/s
Release 8 Category 2 51.0 Mbits/s 2 25.5 Mbit/s
Release 8 Category 3 102.0 Mbits/s 2 51.0 Mbit/s
Release 8 Category 4 150.8 Mbits/s 2 51.0 Mbit/s
Release 8 Category 5 299.6 Mbits/s 4 75.4 Mbit/s
Release 10 Category 6 301.5 Mbits/s 2 or 4 51.0 Mbit/s
Release 10 Category 7 301.5 Mbits/s 2 or 4 102.0 Mbit/s
Release 10 Category 8 2998.6 Mbits/s 8 1497.8 Mbit/s

Note: These are L1 transport data data rates not including the different protocol layers overhead. Note: The 3.0 Gbps / 1.5 Gbps data rate specified as Category 8 is near the peak aggregate data rate for a base station sector. A more realistic maximum data rate for a single user is 1.2 Gbps (downlink) and 600 Mbps (uplink).[14]

EUTRAN releases

As the rest of the 3GPP standard parts E-UTRA is structured in releases.

All LTE releases have been designed so far keeping backward compatibility in mind. That is, a release 8 compliant terminal will work in a release 10 network, while release 10 terminals would be able to use its extra functionality.

Frequency bands and channel bandwidths

From Tables 5.5-1 "E-UTRA Operating Bands" and 5.6.1-1 "E-UTRA Channel Bandwidth" of 3GPP TS 36.101,[15] the following table lists the specified frequency bands of LTE and the channel bandwidths each listed band supports:

EUTRAN
Operating Band
Uplink (UL)
Operating Band
BS Receive
UE Transmit
Downlink (DL)
Operating Band
BS Transmit
UE Receive
Duplex Mode Channel
Bandwidths (MHz)
Alias Region(s)
001 I (1) 017 1920 MHz to 1980 MHz 017 2110 MHz to 2170 MHz FDD 5, 10, 15, 20 UMTS IMT, "2100" Japan, Europe, Asia
002 II (2) 012 1850 MHz to 1910 MHz 012 1930 MHz to 1990 MHz FDD 1.4, 3, 5, 10, 15, 20 PCS, "1900" Canada, US, Latin America
003 III (3) 010 1710 MHz to 1785 MHz 010 1805 MHz to 1880 MHz FDD 1.4, 3, 5, 10, 15, 20 DCS 1800, "1800" Finland,[16] Hong Kong[17][18], Germany [19]
004 IV (4) 009 1710 MHz to 1755 MHz 013 2110 MHz to 2155 MHz FDD 1.4, 3, 5, 10, 15, 20 AWS, "1.7/2.1 GHz" Canada, US, Latin America
005 V (5) 006 824 MHz to 849 MHz 006 869 MHz to 894 MHz FDD 1.4, 3, 5, 10 Cellular 850, UMTS850 Canada, US, Australia, Latin America
006 VI (6) 007 830 MHz to 840 MHz 007 875 MHz to 885 MHz FDD 5, 10 UMTS800 Japan
007 VII (7) 021 2500 MHz to 2570 MHz 021 2620 MHz to 2690 MHz FDD 5, 10, 15, 20 IMT-E, "2.6 GHz" EU, Latin America
008 VIII (8) 008880 MHz to 915 MHz 008925 MHz to 960 MHz FDD 1.4, 3, 5, 10 GSM, UMTS900, EGSM900 EU, Latin America
009 IX (9) 012 1749.9 MHz to 1784.9 MHz 011 1844.9 MHz to 1879.9 MHz FDD 5, 10, 15, 20 UMTS1700 Japan
010 X (10) 011 1710 MHz to 1770 MHz 013 2110 MHz to 2170 MHz FDD 5, 10, 15, 20 UMTS, IMT 2000 Uruguay, Ecuador, Peru
011 XI (11) 009 1427.9 MHz to 1447.9 MHz 009 1475.9 MHz to 1495.9 MHz FDD 5, 10 PDC Japan (Softbank, KDDI, DoCoMo)[20]
012 XII (12) 001 699 MHz to 716 MHz 001 729 MHz to 746 MHz FDD 1.4, 3, 5, 10 lower SMH blocks A/B/C US
013 XIII (13) 003 776 MHz to 787 MHz 003 746 MHz to 757 MHz FDD 5, 10 upper SMH block C US
014 XIV (14) 004 788 MHz to 798 MHz 004 758 MHz to 768 MHz FDD 5, 10 upper SMH block D US
017 XVII (17) 002 704 MHz to 716 MHz 002 734 MHz to 746 MHz FDD 5, 10 US
018 XVIII (18) 002 815 MHz to 830 MHz 002 860 MHz to 875 MHz FDD 5, 10, 15
019 XIX (19) 002 830 MHz to 845 MHz 002 875 MHz to 890 MHz FDD 5, 10, 15
020 XX (20) 005 832 MHz to 862 MHz 005 791 MHz to 821 MHz FDD 5, 10, 15, 20 EU's Digital Dividend 800 MHz EU
021 XXI (21) 005 1447.9 MHz to 1462.9 MHz 005 1495.9 MHz to 1510.9 MHz FDD 5, 10, 15
022 XXII (22) 005 3410 MHz to 3490 MHz 005 3510 MHz to 3590 MHz FDD 5, 10, 15, 20
023 XXIII (23) 005 2000 MHz to 2020 MHz 005 2180 MHz to 2200 MHz FDD 1.4, 3, 5, 10
024 XXIV (24) 005 1626.5 MHz to 1660.5 MHz 005 1525 MHz to 1559 MHz FDD 5, 10
025 XXV (25) 005 1850 MHz to 1915 MHz 005 1930 MHz to 1995 MHz FDD 1.4, 3, 5, 10, 15, 20
033 XXXIII (33) 016 1900 MHz to 1920 MHz TDD 5, 10, 15, 20
034 XXXIV (34) 020 2010 MHz to 2025 MHz TDD 5, 10, 15
035 XXXV (35) 014 1850 MHz to 1910 MHz TDD 1.4, 3, 5, 10, 15, 20
036 XXXVI (36) 019 1930 MHz to 1990 MHz TDD 1.4, 3, 5, 10, 15, 20
037 XXXVII (37) 017 1910 MHz to 1930 MHz TDD 5, 10, 15, 20
038 XXXVIII (38) 023 2570 MHz to 2620 MHz TDD 5, 10, 15, 20 EU
039 XXXIX (39) 015 1880 MHz to 1920 MHz TDD 5, 10, 15, 20
040 XL (40) 021 2300 MHz to 2400 MHz TDD 5, 10, 15, 20 IMT-2000 China, India, Australia
041 XLI (41) 021 2496 MHz to 2690 MHz TDD 5, 10, 15, 20 BRS/EBS US (Clearwire)
042 XLII (42) 021 3400 MHz to 3600 MHz TDD 5, 10, 15, 20
043 XLIII (43) 021 3600 MHz to 3800 MHz TDD 5, 10, 15, 20

Technology demos

See also

References

  1. ^ a b 3GPP UMTS Long Term Evolution page
  2. ^ a b c 3GPP TS 36.306 E-UTRA User Equipment radio access capabilities
  3. ^ a b 3GPP TS 36.300 E-UTRA Overall description
  4. ^ 3GPP TS 36.201 E-UTRA: LTE physical layer; General description
  5. ^ 3GPP TS 36.321 E-UTRA: Access Control (MAC) protocol specification
  6. ^ 3GPP TS 36.322 E-UTRA: Radio Link Control (RLC) protocol specification
  7. ^ 3GPP TS 36.323 E-UTRA: Packet Data Convergence Protocol (PDCP) specification
  8. ^ 3GPP TS 36.331 E-UTRA: Radio Resource Control (RRC) protocol specification
  9. ^ 3GPP TS 24.301 Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage 3
  10. ^ http://cp.literature.agilent.com/litweb/pdf/5989-7898EN.pdf
  11. ^ 3GPP TS 36.212 E-UTRA Multiplexing and channel coding
  12. ^ 3GPP TS 36.211 E-UTRA Physical channels and modulation
  13. ^ Nomor Research Newsletter: LTE Random Access Channel
  14. ^ 3GPP LTE / LTE-A Standardization: Status and Overview of Technologie, slide 16
  15. ^ 3GPP TS 36.101 E-UTRA: User Equipment (UE) radio transmission and reception
  16. ^ Reuters UK
  17. ^ Wireless Federation
  18. ^ OFTA 1800 MHz Auction
  19. ^ [1] NGNM on DT LTE deployment
  20. ^ IntoMobile "Japan Opening up New Spectrum for LTE..."
  21. ^ NTT DoCoMo develops low power chip for 3G LTE handsets
  22. ^ Nortel and LG Electronics Demo LTE at CTIA and with High Vehicle Speeds :: Wireless-Watch Community (Access through web.archive.org)
  23. ^ "Skyworks Rolls Out Front-End Module for 3.9G Wireless Applications. (Skyworks Solutions Inc.)". Wireless News. February 14, 2008. http://www.accessmylibrary.com/coms2/summary_0286-33896688_ITM. Retrieved 2008-09-14. 
  24. ^ "Wireless News Briefs - February 15, 2008". WirelessWeek. February 15, 2008. http://www.wirelessweek.com/News_Briefs021508.aspx. Retrieved 2008-09-14. 
  25. ^ "Skyworks Introduces Industry's First Front-End Module for 3.9G Wireless Applications.". Skyworks press release (Free with registration). 11 FEB 2008. http://www.accessmylibrary.com/coms2/summary_0286-33869434_ITM. Retrieved 2008-09-14. 

External links