Guard cells are specialized cells located in the Leaf epidermis of plants. Pairs of guard cells surround tiny stomatal airway pores (Figure 1). These tiny holes in the surface of leaves are necessary for gas exchange into and out of the plant; carbon dioxide (CO2) enters the plant allowing the carbon fixation reactions of photosynthesis to occur. Oxygen (O2) exits the plant as a byproduct of photosynthesis. The opening and closing of the stomatal gas exchange holes is regulated by swelling and shrinking of the two surrounding guard cells (Figure 1). Due to the presence of the stomatal pores on plant leaf surfaces, water evaporates through the stomatal openings causing plants to lose water. Over 95% of water loss from plants can occur by evaporation (transpiration) through the stomatal pores. Therefore, it is important for plants to be able to balance the amount of CO2 being brought into the plant with the amount of water escaping as a result of the open stomatal pores. Hence, the guard cells are the gate keepers of the plants ability to take in CO2 from the atmosphere for photosynthesis – while regulating how much water plants lose to the atmosphere.[1][2][3][4] Opening and closure of the stomatal pore (Figure 1) is mediated by changes in the turgor pressure of the two guard cells. The turgor pressure of guard cells is controlled by movements of large quantities of ions and sugars into and out of the guard cells. When guard cells take up these solutes, the water potential (Ψ) inside the cells decreases, causing osmotic water flow into the guard cells. This leads to a turgor pressure increase causing swelling of the guard cells and the stomatal pores open (Figure 2). The ions that are taken up by guard cells are mainly potassium (K+) ions[5][6][7] and chloride (Cl-) ions.[8] In addition guard cells take up sugars that also contribute to opening of the stomatal pores.
Contents |
Water stress (drought and salt stress) is one of the major environmental problems causing severe losses in agriculture and in nature. Drought tolerance of plants is mediated by several mechanisms that work together, including stabilizing and protecting the plant from damage caused by desiccation and also controlling how much water plants lose through the stomatal pores during drought. A plant hormone, abscisic acid (ABA), is produced in response to drought. A major type of ABA receptor has been identified.[9][10] Future research is needed to test if these receptors can be used to engineer drought tolerance in plants. The plant hormone ABA causes the stomatal pores to close in response to drought, which reduces plant water loss via transpiration to the atmosphere and allows plants to avoid or slow down water loss during droughts. The use of drought tolerant crop plants would lead to a reduction in crop losses during droughts. Since guard cells control water loss of plants, the investigation on how stomatal opening and closure are regulated could lead to the development of plants with improved avoidance or slowing of desiccation and better water use efficiency.[1]
Ion uptake into guard cells causes stomatal opening: The opening of gas exchange pores requires the uptake of potassium ions into guard cells. Potassium channels and pumps have been identified and shown to function in the uptake of ions and opening of stomatal apertures (Figure 2).[7][11][12][13][14][15][16][17] Ion release from guard cells causes stomatal pore closing: Other ion channels have been identified that mediate release of ions from guard cells, which results in osmotic water efflux from guard cells due to osmosis, shrinking of the guard cells, and closing of stomatal pores (Figures 1 and 2). Specialized potassium efflux channels participate in mediating release of potassium from guard cells.[13][18][19][20][21] Anion channels were identified as important controllers of stomatal closing.[22][23][24][25][26][27][28] Anion channels have several major functions in controlling stomatal closing:[23] (a) They allow release of anions, such as chloride and malate from guard cells, which is needed for stomatal closing. (b) Anion channels are activated by signals that cause stomatal closing, for example by intracellular calcium and ABA.[23][26][29] The resulting release of negatively charged anions from guard cells results in an electrical shift of the membrane to more positive voltages (depolarization) at the intracellular surface of the guard cell plasma membrane. This electrical depolarization of guard cells leads to activation of the outward potassium channels and the release of potassium through these channels (Figure 2). At least two major types of anion channels have been characterized in the plasma membrane: S-type anion channels and R-type anion channels.[22][23][25][30]
Vacuoles are large intracellular storage organelles in plants cells. In addition to the ion channels in the plasma membrane, vacuolar ion channels have important functions in regulation of stomatal opening and closure because vacuoles can occupy up to 90% of guard cell’s volume. Therefore, a majority of ions are released from vacuoles when stomata are closed.[31] Vacuolar K+ (VK) channels and fast vacuolar channels can mediate K+ release from vacuoles.[32][33][34] Vacuolar K+ (VK) channels are activated by elevation in the intracellular calcium concentration.[32] Another type of calcium-activated channel, is the slow vacuolar (SV) channel.[35] SV channels have been shown to function as cation channels that are permeable to Ca2+ ions,[32] but their exact functions are not yet known in plants.[36]
Guard cells perceive and process environmental and endogenous stimuli such as light, humidity, CO2, temperature, drought, and plant hormones to trigger cellular responses resulting in stomatal opening or closure. These signal transduction pathways determine for example how quickly a plant will lose water during a drought period. Guard cells have become a model for single cell signaling. Using Arabidopsis thaliana, the investigation of signal processing in single guard cells has become open to the power of genetics.[26] Cytosolic and nuclear proteins and chemical messengers that function in stomatal movements have been identified that mediate the transduction of environmental signals thus controlling CO2 intake into plants and plant water loss.[1][2][3][4] Research on guard cell signal transduction mechanisms is producing an understanding of how plants can improve their response to drought stress by reducing plant water loss.[1][37][38] Guard cells also provide an excellent model for basic studies on how a cell integrates numerous kinds of input signals to produce a response (stomatal opening or closing). These responses require coordination of numerous cell biological processes in guard cells, including signal reception, ion channel and pump regulation, membrane trafficking, transcription, cytoskeletal rearrangements and more. A challenge for future research is to assign the functions of some of the identified proteins to these diverse cell biological processes.
During the development of plant leaves, the specialized guard cells differentiate from “guard mother cells”.[39][40] The density of the stomatal pores in leaves is regulated by environmental signals, including the continuingly increasing atmospheric CO2 concentration, which reduces the density of stomatal pores in the surface of leaves in many plant species by presently unknown mechanisms. The genetics of stomatal development can be directly studied by imaging of the leaf epidermis using a microscope (Figure 1). Several major control proteins that function in a pathway mediating the development of guard cells and the stomatal pores have been identified.[39][40]