Frontogenesis

Frontogenesis, in meteorology, refers to the formation or strengthening of an atmospheric front. During frontogenesis, the temperature gradient tightens and as a result the thermal wind becomes imbalanced. To maintain balance, the geostrophic wind aloft and below adjust, such that regions of divergence/convergence form. Mass continuity would require a vertical transport of air along the cold front where there is divergence (lowered pressure). Although this circulation is described by a series of processes, they are actually occurring at the same time, observable along the front as a thermally direct circulation. There are several factors that influence the final shape and tilt of the circulation around the front, ultimately determining the type and location of clouds and precipitation. [1][2]

3-Dimensional Equation

The three-dimensional form of the frontogenesis equation is

\begin{alignat}{3} F = \frac{1}{|\nabla \theta|}\cdot \frac{\partial \theta}{\partial x}\left \{ \frac{1}{C_p} \left ( \frac{p_\circ}{p} \right )^\kappa \left [ \frac{\partial}{\partial x} \left (\frac{dQ}{dt} \right ) \right ] - \left ( \frac{\partial u}{\partial x} \frac{\partial \theta}{\partial x} \right ) - \left ( \frac{\partial v}{\partial x} \frac{\partial \theta}{\partial y} \right ) - \left ( \frac{\partial w}{\partial x} \frac{\partial \theta}{\partial z} \right ) \right \} \\
%2B \frac{\partial \theta}{\partial y}\left \{ \frac{1}{C_p} \left ( \frac{p_\circ}{p} \right )^\kappa \left [ \frac{\partial}{\partial y} \left (\frac{dQ}{dt} \right ) \right ] - \left ( \frac{\partial u}{\partial y} \frac{\partial \theta}{\partial x} \right ) - \left ( \frac{\partial v}{\partial y} \frac{\partial \theta}{\partial y} \right ) - \left ( \frac{\partial w}{\partial y} \frac{\partial \theta}{\partial z} \right ) \right \} \\
%2B \frac{\partial \theta}{\partial z}\left \{ \frac{p_\circ^\kappa}{C_p} \left [ \frac{\partial}{\partial z} \left (p^{-\kappa} \frac{dQ}{dt} \right ) \right ] - \left ( \frac{\partial u}{\partial z} \frac{\partial \theta}{\partial x} \right ) - \left ( \frac{\partial v}{\partial z} \frac{\partial \theta}{\partial y} \right ) - \left ( \frac{\partial w}{\partial z} \frac{\partial \theta}{\partial z} \right ) \right \}\end{alignat}

where each dimension begins with a diabatic term; in the x direction

\frac{1}{C_p} \left ( \frac{p_\circ}{p} \right )^\kappa \left [ \frac{\partial}{\partial x} \left (\frac{dQ}{dt} \right ) \right ]

in the y direction

\frac{1}{C_p} \left ( \frac{p_\circ}{p} \right )^\kappa \left [ \frac{\partial}{\partial y} \left (\frac{dQ}{dt} \right ) \right ]

and in the z direction

\frac{p_\circ^\kappa}{C_p} \left [ \frac{\partial}{\partial z} \left (p^{-\kappa} \frac{dQ}{dt} \right ) \right ].

The equation also includes horizontal and vertical deformation terms; in the x direction

-\left ( \frac{\partial u}{\partial x} \frac{\partial \theta}{\partial x} \right ) - \left ( \frac{\partial v}{\partial x} \frac{\partial \theta}{\partial y} \right )

and in the y direction

-\left ( \frac{\partial u}{\partial y} \frac{\partial \theta}{\partial x} \right ) - \left ( \frac{\partial v}{\partial y} \frac{\partial \theta}{\partial y} \right )

and in the vertical z direction

-\left ( \frac{\partial u}{\partial z} \frac{\partial \theta}{\partial x} \right ) - \left ( \frac{\partial v}{\partial z} \frac{\partial \theta}{\partial y} \right ).

The final terms are the tilting term and the vertical divergence term; the tilting term is represented in the three-dimensional frontogenesis equation in the x and y directions

-\left ( \frac{\partial w}{\partial x} \frac{\partial \theta}{\partial z} \right )

-\left ( \frac{\partial w}{\partial y} \frac{\partial \theta}{\partial z} \right )

and the vertical divergence term is present as

-\left ( \frac{\partial w}{\partial z} \frac{\partial \theta}{\partial z} \right )

References

  1. ^ Preview Text, Holton, James R., 2004: An Introduction to Dynamic Meteorology. Academic Press, 277 pp.
  2. ^ Preview Text, Carlson, Toby N., 1991: Mid-Latitude Weather Systems. HarperCollins, 435 pp.

See also