In the study of Dirac fields in quantum field theory, Richard Feynman invented the convenient Feynman slash notation (less commonly known as the Dirac slash notation[1]). If A is a covariant vector (i.e., a 1-form),
using the Einstein summation notation where γ are the gamma matrices.
Contents |
Using the anticommutators of the gamma matrices, one can show that for any and ,
In particular,
Further identities can be read off directly from the gamma matrix identities by replacing the metric tensor with inner products. For example,
Often, when using the Dirac equation and solving for cross sections, one finds the slash notation used on four-momentum:
using the Dirac basis for the 's,
as well as the definition of four momentum
We see explicitly that