Fatty alcohols are aliphatic alcohols consisting of a chain of 8 to 22 carbon atoms. Fatty alcohols usually have even number of carbon atoms and a single alcohol group (-OH) attached to the terminal carbon. Some are unsaturated and some are branched. They are widely used in industrial chemistry.
Contents |
Most fatty alcohols in nature are found as waxes which are esters with fatty acids and fatty alcohols.[1] They are produced by bacteria, plants and animals for purposes of buoyancy, as source of metabolic water and energy, biosonoar lenses (marine mammals) and for thermal insulation in the form of waxes (in plants and insects).[2] Fatty alcohols were unavailable until the early 1900s. They were originally obtained by reduction of wax esters with sodium by the Bouveault–Blanc reduction process. In the 1930s catalytic hydrogenation was commercialized, which allowed the conversion of fatty acid esters, typically tallow, to the alcohols. In the 1940s and 1950s, petrochemicals became an important source of chemicals, and Karl Ziegler had discovered the polymerization of ethylene. These two developments opened the way to synthetic fatty alcohols.
The traditional and still important source of fatty alcohols are fatty acid esters. Wax esters were formerly extracted from sperm oil, obtained from whales. An alternative plant source is jojoba. Fatty acid triesters, known as triglycerides, are obtained from plant and animal sources. These triesters are subjected to transesterification to give methyl esters, which in turn are hydrogenated to the alcohols. Although tallow is typically C16-C18, the chain length from plant sources are more variable. Higher alcohols (C20–C22) can be obtained from rapeseed. Shorter alcohols (C12-C14) are obtained from coconut oil.
Fatty alcohols are also prepared from petrochemical sources. In the Ziegler process, ethylene is oligomerized using triethylaluminium followed by air oxidation. This process affords even-numbered alcohols:
Alternatively ethylene can be oligomerized to give mixtures of alkenes, which are subjected to hydroformylation, this process affording odd-numbered aldehyde, which is subsequently hydrogenated. For example, from 1-decene, hydroformylation gives the C11 alcohol:
In the Shell higher olefin process, the chain-length distribution in the initial mixture of alkene oligomers is adjusted so as to more closely match market demand. Shell does this by means of an intermediate metathesis reaction.[3] The resultant mixture is fractionated and hydroformylated/hydrogenated in a subsequent step.
Fatty alcohols are mainly used in the production of detergents and surfactants. They are components also of cosmetics, foods, and as industrial solvents. Due to their amphipathic nature, fatty alcohols behave as nonionic surfactants. They find use as emulsifiers, emollients and thickeners in cosmetics and food industry.
Very long chain fatty alcohols (VLCFA), obtained from plant waxes and beeswax have been reported to lower plasma cholesterol in humans. They can be found in unrefined cereal grains, beeswax, and many plant-derived foods. Reports suggest that 5–20 mg per day of mixed C24–C34 alcohols, including octacosanol and triacontanol, lower low-density lipoprotein (LDL) cholesterol by 21%–29% and raise high-density lipoprotein cholesterol by 8%–15%. Wax esters are hydrolyzed by a bile salt–dependent pancreatic carboxyl esterase, releasing long chain alcohols and fatty acids that are absorbed in the gastrointestinal tract. Studies of fatty alcohol metabolism in fibroblasts suggest that very long chain fatty alcohols, fatty aldehydes, and fatty acids are reversibly inter-converted in a fatty alcohol cycle. The metabolism of these compounds is impaired in several inherited human peroxisomal disorders, including adrenoleukodystrophy and Sjögren-Larsson syndrome.[4]
Exposure could occur with commercial application in the manufacturing (such as in production and formulation) or with use of the final product. Hazards are mitigated in industry by following information found in material safety data sheets.
Tests of acute and repeated exposures have revealed a low level of toxicity from inhalation, oral or dermal exposure of fatty alcohols. Fatty alcohols are not very volatile and the acute lethal concentration is greater than the saturated vapor pressure. Longer chain (C12-C16) fatty alcohols produce less health effects than short chain (< C12). Short chain fatty alcohols are considered eye irritants, while long chain alcohols are not.[5] There is no skin sensitization potential from fatty alcohols.[6]
Repeated exposure to fatty alcohols produce low level toxicity and certain compounds in this category can cause local irritation on contact or low-grade liver effects (essentially linear alcohols have a slightly higher rate of occurrence of these effects). No effects on the central nervous system have been seen with inhalation and oral exposure. Tests of repeated bolus dosages of 1-hexanol and 1-octanol showed potential for CNS depression and induced respiratory distress. No potential for peripheral neuropathy has been found. In rats, the no observable adverse effect level (NOAEL) ranges from 200 mg/kg/day to 1000 mg/kg/day by ingestion. There has been no evidence that fatty alcohols are carcinogenic, mutagenic, or cause reproductive toxicity or infertility.Fatty alcohols are effectively eliminated from the body when exposed, limiting possibility of retention or bioaccumulation.[6]
Margins of exposure resulting from consumer uses of these chemicals are adequate for the protection of human health as determined by the Organization for Economic Co-operation and Development (OECD) high production volume chemicals program.[5][7]
Fatty alcohols up to chain length C18 are biodegradable, with length up to C16 biodegrading within 10 days completely. Chains C16 to C18 were found to biodegrade from 62% to 76% in 10 days. Chains greater than C18 were found to degrade by 37% in 10 days. Field studies at waste-water treatment plants have shown that 99% of fatty alcohols lengths C12-C18 are removed.[6]
Fate prediction using Fugacity modeling has shown that fatty alcohols with chain lengths of C10 and greater in water partition into sediment. Lengths C14 and above are predicted to stay in the air upon release. Modeling shows that each type of fatty alcohol will respond independently upon environmental release.[6]
Fish, invertebrates and algae experience similar levels of toxicity with fatty alcohols although it is dependent on chain length with the shorter chain having greater toxicity potential. Longer chain lengths show no toxicity to aquatic organisms.[6]
Chain Size | Acute Toxicity | Chronic Toxicity |
---|---|---|
< C11 | 1–100 mg/l | 0.1-1.0 mg/l |
C11-C13 | 0.1-1.0 mg/l | 0.1 - <1.0 mg/l |
C14-C15 | NA | 0.01 mg/l |
>C16 | NA | NA |
This category of chemicals was evaluated under the Organization for Economic Co-operation and Development (OECD) high production volume chemicals program. No unacceptable environmental risks were identified.[7]
Name | Carbon atoms | Branches/saturated? | Formula |
capryl alcohol (1-octanol) | 8 carbon atoms | ||
2-ethyl hexanol | 8 carbon atoms | branched | |
pelargonic alcohol (1-nonanol) | 9 carbon atoms | ||
capric alcohol (1-decanol, decyl alcohol) | 10 carbon atoms | ||
Undecyl alcohol (1-undecanol, undecanol, Hendecanol) | 11 carbon atoms | ||
Lauryl alcohol (Dodecanol, 1-dodecanol) | 12 carbon atoms | ||
Tridecyl alcohol (1-tridecanol, tridecanol, isotridecanol) | 13 carbon atoms | ||
Myristyl alcohol (1-tetradecanol) | 14 carbon atoms | ||
Pentadecyl alcohol (1-pentadecanol, pentadecanol) | 15 carbon atoms | ||
cetyl alcohol (1-hexadecanol) | 16 carbon atoms | ||
palmitoleyl alcohol (cis-9-hexadecen-1-ol) | 16 carbon atoms | unsaturated | CH3(CH2)5CH=CH(CH2)8OH |
Heptadecyl alcohol (1-n-heptadecanol, heptadecanol) | 17 carbon atoms | ||
stearyl alcohol (1-octadecanol) | 18 carbon atoms | ||
isostearyl alcohol (16-methylheptadecan-1-ol) | 18 carbon atoms | branched | (CH3)2CH-(CH2)15OH |
elaidyl alcohol (9E-octadecen-1-ol) | 18 carbon atoms | unsaturated | CH3(CH2)7CH=CH(CH2)8OH |
oleyl alcohol (cis-9-octadecen-1-ol) | 18 carbon atoms | unsaturated | |
linoleyl alcohol (9Z, 12Z-octadecadien-1-ol) | 18 carbon atoms | polyunsaturated, a hydrolyzation of linoleic acid, an omega 6 fatty acid |
|
elaidolinoleyl alcohol (9E, 12E-octadecadien-1-ol) | 18 carbon atoms | polyunsaturated | |
linolenyl alcohol (9Z, 12Z, 15Z-octadecatrien-1-ol) | 18 carbon atoms | polyunsaturated | |
elaidolinolenyl alcohol (9E, 12E, 15-E-octadecatrien-1-ol) | 18 carbon atoms | polyunsaturated | |
ricinoleyl alcohol (12-hydroxy-9-octadecen-1-ol) | 18 carbon atoms | unsaturated, diol | CH3(CH2)5CH(OH)CH2CH=CH(CH2)8OH |
Nonadecyl alcohol (1-nonadecanol) | 19 carbon atoms | ||
arachidyl alcohol (1-eicosanol) | 20 carbon atoms | ||
Heneicosyl alcohol (1-heneicosanol) | 21 carbon atoms | ||
behenyl alcohol (1-docosanol) | 22 carbon atoms | ||
erucyl alcohol (cis-13-docosen-1-ol) | 22 carbon atoms | unsaturated | CH3(CH2)7CH=CH(CH2)12OH |
lignoceryl alcohol (1-tetracosanol) | 24 carbon atoms | ||
ceryl alcohol (1-hexacosanol) | 26 carbon atoms | ||
montanyl alcohol, cluytyl alcohol (1-octacosanol) | 28 carbon atoms | ||
myricyl alcohol, melissyl alcohol (1-triacontanol) | 30 carbon atoms | ||
geddyl alcohol (1-tetratriacontanol) | 34 carbon atoms | ||
Cetearyl alcohol |
Behenyl alcohol, lignoceryl alcohol, ceryl alcohol, 1-heptacosanol, montanyl alcohol, 1-nonacosanol, myricyl alcohol, 1-dotriacontanol, and geddyl alcohol are together classified as policosanol, with montanyl alcohol and myricyl alcohol being the most abundant.
|