Renewable energy |
---|
Biofuel |
Ethanol fuel is ethanol (ethyl alcohol), the same type of alcohol found in alcoholic beverages. It is most often used as a motor fuel, mainly as a biofuel additive for gasoline. World ethanol production for transport fuel tripled between 2000 and 2007 from 17 billion to more than 52 billion litres. From 2007 to 2008, the share of ethanol in global gasoline type fuel use increased from 3.7% to 5.4%.[1] In 2010 worldwide ethanol fuel production reached 22.95 billion U.S. liquid gallons(bg) (86.9 billion liters), with the United States as the top producer with 13.2 bg (50 billion liters), accounting for 57.5 percent of global production.[2] Ethanol fuel has a "gasoline gallon equivalency" (GGE) value of 1.5 US gallons (5.7 L).[3]
Ethanol fuel is widely used in Brazil and in the United States, and together both countries were responsible for 88 percent of the world's ethanol fuel production in 2010.[2] Most cars on the road today in the U.S. can run on blends of up to 10% ethanol,[4] and the use of 10% ethanol gasoline is mandated in some U.S. states and cities. Since 1976 the Brazilian government has made it mandatory to blend ethanol with gasoline, and since 2007 the legal blend is around 25% ethanol and 75% gasoline (E25).[5] By December 2010 Brazil had a fleet of 12 million flex-fuel automobiles and light trucks and over 500 thousand flex-fuel motorcycles regularly using neat ethanol fuel (known as E100).[6][7][8][9]
Bioethanol is a form of renewable energy that can be produced from agricultural feedstocks. It can be made from very common crops such as sugar cane, potato, manioc and corn. There has been considerable debate about how useful bioethanol will be in replacing gasoline. Concerns about its production and use relate to increased food prices due to the large amount of arable land required for crops,[10] as well as the energy and pollution balance of the whole cycle of ethanol production, especially from corn.[11][12] Recent developments with cellulosic ethanol production and commercialization may allay some of these concerns.[13]
Cellulosic ethanol offers promise because cellulose fibers, a major and universal component in plant cells walls, can be used to produce ethanol.[14][15] According to the International Energy Agency, cellulosic ethanol could allow ethanol fuels to play a much bigger role in the future than previously thought.[16]
Contents |
Glucose (a simple sugar) is created in the plant by photosynthesis.
During ethanol fermentation, glucose is decomposed into ethanol and carbon dioxide.
During combustion ethanol reacts with oxygen to produce carbon dioxide, water, and heat:
After doubling the combustion reaction because two molecules of ethanol are produced for each glucose molecule, and adding all three reactions together, there are equal numbers of each type of atom on each side of the equation, and the net reaction for the overall production and consumption of ethanol is just:
The heat of the combustion of ethanol is used to drive the piston in the engine by expanding heated gases. It can be said that sunlight is used to run the engine (as is the case with any renewable energy source, as sunlight is the only way energy is added to the planet, except for tidal energy, which comes from the moon, and geothermal energy, which comes from the heat already present inside the earth).
Glucose itself is not the only substance in the plant that is fermented. The simple sugar fructose also undergoes fermentation. Three other compounds in the plant can be fermented after breaking them up by hydrolysis into the glucose or fructose molecules that compose them. Starch and cellulose are molecules that are strings of glucose molecules, and sucrose (ordinary table sugar) is a molecule of glucose bonded to a molecule of fructose. The energy to create fructose in the plant ultimately comes from the metabolism of glucose created by photosynthesis, and so sunlight also provides the energy generated by the fermentation of these other molecules.
Ethanol may also be produced industrially from ethene (ethylene). Addition of water to the double bond converts ethene to ethanol:
This is done in the presence of an acid which catalyzes the reaction, but is not consumed. The ethene is produced from petroleum by steam cracking.
When ethanol is burned in the atmosphere rather than in pure oxygen, other chemical reactions occur with different components of the atmosphere such as nitrogen (N2). This leads to the production of nitrous oxides, a major air pollutant.
Ethanol is a renewable energy source because the energy is generated by using a resource, sunlight, which cannot be depleted. Creation of ethanol starts with photosynthesis causing a feedstock, such as sugar cane or corn, to grow. These feedstocks are processed into ethanol.
About 5% of the ethanol produced in the world in 2003 was actually a petroleum product.[17] It is made by the catalytic hydration of ethylene with sulfuric acid as the catalyst. It can also be obtained via ethylene or acetylene, from calcium carbide, coal, oil gas, and other sources. Two million tons of petroleum-derived ethanol are produced annually. The principal suppliers are plants in the United States, Europe, and South Africa.[18] Petroleum derived ethanol (synthetic ethanol) is chemically identical to bio-ethanol and can be differentiated only by radiocarbon dating.[19]
Bio-ethanol is usually obtained from the conversion of carbon based feedstock. Agricultural feedstocks are considered renewable because they get energy from the sun using photosynthesis, provided that all minerals required for growth (such as nitrogen and phosphorus) are returned to the land. Ethanol can be produced from a variety of feedstocks such as sugar cane, bagasse, miscanthus, sugar beet, sorghum, grain, switchgrass, barley, hemp, kenaf, potatoes, sweet potatoes, cassava, sunflower, fruit, molasses, corn, stover, grain, wheat, straw, cotton, other biomass, as well as many types of cellulose waste and harvestings, whichever has the best well-to-wheel assessment.
An alternative process to produce bio-ethanol from algae is being developed by the company Algenol. Rather than grow algae and then harvest and ferment it the algae grow in sunlight and produce ethanol directly which is removed without killing the algae. It is claimed the process can produce 6,000 US gallons per acre (56,000 litres per ha) per year compared with 400 US gallons per acre (3,750 l/ha) for corn production.[20]
Currently, the first generation processes for the production of ethanol from corn use only a small part of the corn plant: the corn kernels are taken from the corn plant and only the starch, which represents about 50% of the dry kernel mass, is transformed into ethanol. Two types of second generation processes are under development. The first type uses enzymes and yeast fermentation to convert the plant cellulose into ethanol while the second type uses pyrolysis to convert the whole plant to either a liquid bio-oil or a syngas. Second generation processes can also be used with plants such as grasses, wood or agricultural waste material such as straw.
The basic steps for large scale production of ethanol are: microbial (yeast) fermentation of sugars, distillation, dehydration (requirements vary, see Ethanol fuel mixtures, below), and denaturing (optional). Prior to fermentation, some crops require saccharification or hydrolysis of carbohydrates such as cellulose and starch into sugars. Saccharification of cellulose is called cellulolysis (see cellulosic ethanol). Enzymes are used to convert starch into sugar.[21]
Ethanol is produced by microbial fermentation of the sugar. Microbial fermentation will currently only work directly with sugars. Two major components of plants, starch and cellulose, are both made up of sugars, and can in principle be converted to sugars for fermentation. Currently, only the sugar (e.g. sugar cane) and starch (e.g. corn) portions can be economically converted. There is much activity in the area of cellulosic ethanol, where the cellulose part of a plant is broken down to sugars and subsequently converted to ethanol.
For the ethanol to be usable as a fuel, the majority of the water must be removed. Most of the water is removed by distillation, but the purity is limited to 95-96% due to the formation of a low-boiling water-ethanol azeotrope with maximum (95.6% m/m (96.5% v/v) ethanol and 4.4% m/m (3.5% v/v) water). This mixture is called hydrous ethanol and can be used as a fuel alone, but unlike anhydrous ethanol, hydrous ethanol is not miscible in all ratios with gasoline, so the water fraction is typically removed in further treatment in order to burn in combination with gasoline in gasoline engines.[22]
There are basically five dehydration processes to remove the water from an azeotropic ethanol/water mixture. The first process, used in many early fuel ethanol plants, is called azeotropic distillation and consists of adding benzene or cyclohexane to the mixture. When these components are added to the mixture, it forms a heterogeneous azeotropic mixture in vapor-liquid-liquid equilibrium, which when distilled produces anhydrous ethanol in the column bottom, and a vapor mixture of water and cyclohexane/benzene. When condensed, this becomes a two-phase liquid mixture. Another early method, called extractive distillation, consists of adding a ternary component which will increase ethanol's relative volatility. When the ternary mixture is distilled, it will produce anhydrous ethanol on the top stream of the column.
With increasing attention being paid to saving energy, many methods have been proposed that avoid distillation altogether for dehydration. Of these methods, a third method has emerged and has been adopted by the majority of modern ethanol plants. This new process uses molecular sieves to remove water from fuel ethanol. In this process, ethanol vapor under pressure passes through a bed of molecular sieve beads. The bead's pores are sized to allow absorption of water while excluding ethanol. After a period of time, the bed is regenerated under vacuum or in the flow of inert atmosphere (e.g. N2) to remove the absorbed water. Two beds are often used so that one is available to absorb water while the other is being regenerated. This dehydration technology can account for energy saving of 3,000 btus/gallon (840 kJ/L) compared to earlier azeotropic distillation.[23]
Ethanol is most commonly used to power automobiles, though it may be used to power other vehicles, such as farm tractors, boats and airplanes. Ethanol (E100) consumption in an engine is approximately 51% higher than for gasoline since the energy per unit volume of ethanol is 34% lower than for gasoline.[24][25] The higher compression ratios in an ethanol-only engine allow for increased power output and better fuel economy than could be obtained with lower compression ratios.[26][27] In general, ethanol-only engines are tuned to give slightly better power and torque output than gasoline-powered engines. In flexible fuel vehicles, the lower compression ratio requires tunings that give the same output when using either gasoline or hydrated ethanol. For maximum use of ethanol's benefits, a much higher compression ratio should be used.[28] Current high compression neat ethanol engine designs are approximately 20 to 30% less fuel efficient than their gasoline-only counterparts.[29]
Ethanol contains soluble and insoluble contaminants.[30] These soluble contaminants, halide ions such as chloride ions, have a large effect on the corrosivity of alcohol fuels. Halide ions increase corrosion in two ways; they chemically attack passivating oxide films on several metals causing pitting corrosion, and they increase the conductivity of the fuel. Increased electrical conductivity promotes electric, galvanic, and ordinary corrosion in the fuel system. Soluble contaminants, such as aluminum hydroxide, itself a product of corrosion by halide ions, clog the fuel system over time.
Ethanol is hygroscopic, meaning it will absorb water vapor directly from the atmosphere. Because absorbed water dilutes the fuel value of the ethanol (although it suppresses engine knock) and may cause phase separation of ethanol-gasoline blends, containers of ethanol fuels must be kept tightly sealed. This high miscibility with water means that ethanol cannot be efficiently shipped through modern pipelines, like liquid hydrocarbons, over long distances.[31] Mechanics also have seen increased cases of damage to small engines, in particular, the carburetor, attributable to the increased water retention by ethanol in fuel.[32]
A 2004 MIT study[33] and an earlier paper published by the Society of Automotive Engineers[34] identify a method to exploit the characteristics of fuel ethanol substantially better than mixing it with gasoline. The method presents the possibility of leveraging the use of alcohol to achieve definite improvement over the cost-effectiveness of hybrid electric. The improvement consists of using dual-fuel direct-injection of pure alcohol (or the azeotrope or E85) and gasoline, in any ratio up to 100% of either, in a turbocharged, high compression-ratio, small-displacement engine having performance similar to an engine having twice the displacement. Each fuel is carried separately, with a much smaller tank for alcohol. The high-compression (which increases efficiency) engine will run on ordinary gasoline under low-power cruise conditions. Alcohol is directly injected into the cylinders (and the gasoline injection simultaneously reduced) only when necessary to suppress ‘knock’ such as when significantly accelerating. Direct cylinder injection raises the already high octane rating of ethanol up to an effective 130. The calculated over-all reduction of gasoline use and CO2 emission is 30%. The consumer cost payback time shows a 4:1 improvement over turbo-diesel and a 5:1 improvement over hybrid. The problems of water absorption into pre-mixed gasoline (causing phase separation), supply issues of multiple mix ratios and cold-weather starting are also avoided.
Ethanol's higher octane rating allows an increase of an engine's compression ratio for increased thermal efficiency.[26] In one study, complex engine controls and increased exhaust gas recirculation allowed a compression ratio of 19.5 with fuels ranging from neat ethanol to E50. Thermal efficiency up to approximately that for a diesel was achieved.[35] This would result in the fuel economy of a neat ethanol vehicle to be about the same as one burning gasoline.
Since 1989 there have also been ethanol engines based on the diesel principle operating in Sweden.[36] They are used primarily in city buses, but also in distribution trucks and waste collectors. The engines, made by Scania, have a modified compression ratio, and the fuel (known as ED95) used is a mix of 93.6 % ethanol and 3.6 % ignition improver, and 2.8% denaturants.[37] The ignition improver makes it possible for the fuel to ignite in the diesel combustion cycle. It is then also possible to use the energy efficiency of the diesel principle with ethanol. These engines have been used in the United Kingdom by Reading Transport but the use of bioethanol fuel is now being phased out.
High ethanol blends present a problem to achieve enough vapor pressure for the fuel to evaporate and spark the ignition during cold weather (since ethanol tends to increase fuel enthalpy of vaporization[38]). When vapor pressure is below 45 kPa starting a cold engine becomes difficult.[39] In order to avoid this problem at temperatures below 11 °C (52 °F)), and to reduce ethanol higher emissions during cold weather, both the US and the European markets adopted E85 as the maximum blend to be used in their flexible fuel vehicles, and they are optimized to run at such a blend. At places with harsh cold weather, the ethanol blend in the US has a seasonal reduction to E70 for these very cold regions, though it is still sold as E85.[40][41] At places where temperatures fall below −12 °C (10 °F) during the winter, it is recommended to install an engine heater system, both for gasoline and E85 vehicles. Sweden has a similar seasonal reduction, but the ethanol content in the blend is reduced to E75 during the winter months.[41][42]
Brazilian flex fuel vehicles can operate with ethanol mixtures up to E100, which is hydrous ethanol (with up to 4% water), which causes vapor pressure to drop faster as compared to E85 vehicles. As a result, Brazilian flex vehicles are built with a small secondary gasoline reservoir located near the engine. During a cold start pure gasoline is injected to avoid starting problems at low temperatures. This provision is particularly necessary for users of Brazil's southern and central regions, where temperatures normally drop below 15 °C (59 °F) during the winter. An improved flex engine generation was launched in 2009 that eliminates the need for the secondary gas storage tank.[43][44] In March 2009 Volkswagen do Brasil launched the Polo E-Flex, the first Brazilian flex fuel model without an auxiliary tank for cold start.[45][46]
To avoid engine stall due to "slugs" of water in the fuel lines interrupting fuel flow, the fuel must exist as a single phase. The fraction of water that an ethanol-gasoline fuel can contain without phase separation increases with the percentage of ethanol.[47] This shows, for example, that E30 can have up to about 2% water. If there is more than about 71% ethanol, the remainder can be any proportion of water or gasoline and phase separation will not occur. The fuel mileage declines with increased water content. The increased solubility of water with higher ethanol content permits E30 and hydrated ethanol to be put in the same tank since any combination of them always results in a single phase. Somewhat less water is tolerated at lower temperatures. For E10 it is about 0.5% v/v at 70 F and decreases to about 0.23% v/v at -30 F.[48]
In many countries cars are mandated to run on mixtures of ethanol. All Brazilian light-duty vehicles are built to operate for an ethanol blend of up to 25% (E25), and since 1993 a federal law requires mixtures between 22% and 25% ethanol, with 25% required as of mid July 2011.[49] In the United States all light-duty vehicles are built to operate normally with an ethanol blend of 10% (E10). At the end of 2010 over 90 percent of all gasoline sold in the U.S. was blended with ethanol.[50] In January 2011 the U.S. Environmental Protection Agency (EPA) issued a waiver to authorize up to 15% of ethanol blended with gasoline (E15) to be sold only for cars and light pickup trucks with a model year of 2001 or newer.[51][52] Other countries have adopted their own requirements.
Beginning with the model year 1999, an increasing number of vehicles in the world are manufactured with engines which can run on any fuel from 0% ethanol up to 100% ethanol without modification. Many cars and light trucks (a class containing minivans, SUVs and pickup trucks) are designed to be flexible-fuel vehicles using ethanol blends up to 85% (E85) in North America and Europe, and up to 100% (E100) in Brazil. In older model years, their engine systems contained alcohol sensors in the fuel and/or oxygen sensors in the exhaust that provide input to the engine control computer to adjust the fuel injection to achieve stochiometric (no residual fuel or free oxygen in the exhaust) air-to-fuel ratio for any fuel mix. In newer models, the alcohol sensors have been removed, with the computer using only oxygen and airflow sensor feedback to estimate alcohol content. The engine control computer can also adjust (advance) the ignition timing to achieve a higher output without pre-ignition when it predicts that higher alcohol percentages are present in the fuel being burned. This method is backed up by advanced knock sensors - used in most high performance gasoline engines regardless of whether they are designed to use ethanol or not - that detect pre-ignition and detonation.
High alcohol fuel blends are reputed to cause corrosion of aluminum fuel system components. However, studies indicate that the addition of water to the high alcohol fuel blends helps prevent corrosion. This is shown in SAE paper 2005-01-3708 Appendix 1.2 where gasoline/alcohol blends of E50, nP50,IP50 nB50, IB50 were tested on steel, copper, nickel, zinc, tin and three types of aluminum. The tests showed that when the water content was increased from 2000ppm to 1%, corrosion was no longer evident except some materials showed discolouration.
In theory, all fuel-driven vehicles have a fuel economy (measured as miles per US gallon, or liters per 100 km) that is directly proportional to the fuel's energy content.[53] In reality, there are many other variables that come into play that affect the performance of a particular fuel in a particular engine. Ethanol contains approx. 34% less energy per unit volume than gasoline, and therefore in theory, burning pure ethanol in a vehicle will result in a 34% reduction in miles per US gallon, given the same fuel economy, compared to burning pure gasoline. Since ethanol has a higher octane rating, the engine can be made more efficient by raising its compression ratio. In fact using a variable turbocharger, the compression ratio can be optimized for the fuel being used, making fuel economy almost constant for any blend.[24][25] For E10 (10% ethanol and 90% gasoline), the effect is small (~3%) when compared to conventional gasoline,[54] and even smaller (1-2%) when compared to oxygenated and reformulated blends.[55] For E85 (85% ethanol), the effect becomes significant. E85 will produce lower mileage than gasoline, and will require more frequent refueling. Actual performance may vary depending on the vehicle. Based on EPA tests for all 2006 E85 models, the average fuel economy for E85 vehicles resulted 25.56% lower than unleaded gasoline.[56] The EPA-rated mileage of current USA flex-fuel vehicles[57] should be considered when making price comparisons, but E85 is a high performance fuel, with an octane rating of about 94-96, and should be compared to premium.[58] In one estimate[59] the US retail price for E85 ethanol is 2.62 US dollar per gallon or 3.71 dollar corrected for energy equivalency compared to a gallon of gasoline priced at 3.03 dollar. Brazilian cane ethanol (100%) is priced at 3.88 dollar against 4.91 dollar for E25 (as July 2007).
While biodiesel production systems have been marketed to home and business users for many years, commercialized ethanol production systems designed for end-consumer use have lagged in the marketplace. In 2008, two different companies announced home-scale ethanol production systems. The AFS125 Advanced Fuel System[60] from Allard Research and Development is capable of producing both ethanol and biodiesel in one machine, while the E-100 MicroFueler[61] from E-Fuel Corporation is dedicated to ethanol only.
The world's top ethanol fuel producers in 2010 were the United States with 13.2 billion U.S. liquid gallons (bg) (50 billion liters) and Brazil (6.92 bg) (26.2 billion liters), accounting together for 88% of world production of 22.95 billion US gallons (86.9 billion liters).[2] Strong incentives, coupled with other industry development initiatives, are giving rise to fledgling ethanol industries in countries such as Germany, Spain, France, Sweden, China, Thailand, Canada, Colombia, India, Australia, and some Central American countries.
Annual Fuel Ethanol Production by Country (2007–2010)[2][62][63] Top 10 countries/regional blocks (Millions of U.S. liquid gallons per year) |
|||||
---|---|---|---|---|---|
World rank |
Country/Region | 2010 | 2009 | 2008 | 2007 |
1 | United States | 13,230.00 | 10,600.00 | 9,000.00 | 6,498.60 |
2 | Brazil | 6,921.54 | 6,577.89 | 6,472.2 | 5,019.2 |
3 | European Union | 1,176.88 | 1,039.52 | 733.60 | 570.30 |
4 | China | 541.55 | 541.55 | 501.90 | 486.00 |
5 | Thailand | 435.20 | 89.80 | 79.20 | |
6 | Canada | 356.63 | 290.59 | 237.70 | 211.30 |
7 | India | 91.67 | 66.00 | 52.80 | |
8 | Colombia | 83.21 | 79.30 | 74.90 | |
9 | Australia | 66.04 | 56.80 | 26.40 | 26.40 |
10 | Other | 247.27 | |||
World Total | 22,946.87 | 19,534.993 | 17,335.20 | 13,101.7 |
Country | Type | Energy balance |
---|---|---|
United States | Corn ethanol | 1.3 |
Brazil | Sugarcane ethanol | 8 |
Germany | Biodiesel | 2.5 |
United States | Cellulosic ethanol† | 2–36†† |
† experimental, not in commercial production
†† depending on production method
All biomass goes through at least some of these steps: it needs to be grown, collected, dried, fermented, and burned. All of these steps require resources and an infrastructure. The total amount of energy input into the process compared to the energy released by burning the resulting ethanol fuel is known as the energy balance (or "Net energy gain"). Figures compiled in a 2007 by National Geographic Magazine[59] point to modest results for corn ethanol produced in the US: one unit of fossil-fuel energy is required to create 1.3 energy units from the resulting ethanol. The energy balance for sugarcane ethanol produced in Brazil is more favorable, 1:8. Energy balance estimates are not easily produced, thus numerous such reports have been generated that are contradictory. For instance, a separate survey reports that production of ethanol from sugarcane, which requires a tropical climate to grow productively, returns from 8 to 9 units of energy for each unit expended, as compared to corn which only returns about 1.34 units of fuel energy for each unit of energy expended.[64] A 2006 University of California Berkley study, after analyzing six separate studies, concluded that producing ethanol from corn uses much less petroleum than producing gasoline.[65]
Carbon dioxide, a greenhouse gas, is emitted during fermentation and combustion. This is canceled out by the greater uptake of carbon dioxide by the plants as they grow to produce the biomass.[66] When compared to gasoline, depending on the production method, ethanol releases less greenhouse gases.[67][68]
Compared with conventional unleaded gasoline, ethanol is a particulate-free burning fuel source that combusts with oxygen to form carbon dioxide, water and aldehydes. Gasoline produces 2.44 CO2 equivalent kg/l and ethanol 1.94.[69] Since ethanol contains 2/3 of the energy per volume as gasoline, ethanol produces 19% more CO2 than gasoline for the same energy. The Clean Air Act requires the addition of oxygenates to reduce carbon monoxide emissions in the United States. The additive MTBE is currently being phased out due to ground water contamination, hence ethanol becomes an attractive alternative additive. Current production methods include air pollution from the manufacturer of macronutrient fertilizers such as ammonia.
A study by atmospheric scientists at Stanford University found that E85 fuel would increase the risk of air pollution deaths relative to gasoline by 9% in Los Angeles, USA: a very large, urban, car-based metropolis that is a worst case scenario.[70] Ozone levels are significantly increased, thereby increasing photochemical smog and aggravating medical problems such as asthma.[71][72]
In 2002, monitoring the process of ethanol production from corn revealed that they released VOCs (volatile organic compounds) at a higher rate than had previously been disclosed.[73] The Environmental Protection Agency (EPA) subsequently reached settlement with Archer Daniels Midland and Cargill, two of the largest producers of ethanol, to reduce emission of these VOCs. VOCs are produced when fermented corn mash is dried for sale as a supplement for livestock feed. Devices known as thermal oxidizers or catalytic oxidizers can be attached to the plants to burn off the hazardous gases.
The calculation of exactly how much carbon dioxide is produced in the manufacture of bioethanol is a complex and inexact process, and is highly dependent on the method by which the ethanol is produced and the assumptions made in the calculation. A calculation should include:
Such a calculation may or may not consider the following effects:
The graph on the right shows figures calculated by the UK government for the purposes of the Renewable transport fuel obligation.[74]
The January 2006 Science article from UC Berkeley's ERG, estimated reduction from corn ethanol in GHG to be 13% after reviewing a large number of studies. In a correction to that article released shortly after publication, they reduce the estimated value to 7.4%. A National Geographic Magazine overview article (2007)[59] puts the figures at 22% less CO2 emissions in production and use for corn ethanol compared to gasoline and a 56% reduction for cane ethanol. Carmaker Ford reports a 70% reduction in CO2 emissions with bioethanol compared to petrol for one of their flexible-fuel vehicles.[75]
An additional complication is that production requires tilling new soil[76] which produces a one-off release of GHG that it can take decades or centuries of production reductions in GHG emissions to equalize.[77] As an example, converting grass lands to corn production for ethanol takes about a century of annual savings to make up for the GHG released from the initial tilling.[76]
Large-scale farming is necessary to produce agricultural alcohol and this requires substantial amounts of cultivated land. University of Minnesota researchers report that if all corn grown in the U.S. were used to make ethanol it would displace 12% of current U.S. gasoline consumption.[78] There are claims that land for ethanol production is acquired through deforestation, while others have observed that areas currently supporting forests are usually not suitable for growing crops.[79][80] In any case, farming may involve a decline in soil fertility due to reduction of organic matter,[81] a decrease in water availability and quality, an increase in the use of pesticides and fertilizers, and potential dislocation of local communities.[82] New technology enables farmers and processors to increasingly produce the same output using less inputs.[78]
Cellulosic ethanol production is a new approach which may alleviate land use and related concerns. Cellulosic ethanol can be produced from any plant material, potentially doubling yields, in an effort to minimize conflict between food needs vs. fuel needs. Instead of utilizing only the starch by-products from grinding wheat and other crops, cellulosic ethanol production maximizes the use of all plant materials, including gluten. This approach would have a smaller carbon footprint because the amount of energy-intensive fertilisers and fungicides remain the same for higher output of usable material. The technology for producing cellulosic ethanol is currently in the commercialization stage.[15][16]
Many analysts suggest that, whichever ethanol fuel production strategy is used, fuel conservation efforts are also needed to make a large impact on reducing petroleum fuel use.[83]
Converting biomass to electricity for charging electric vehicles may be a more "climate-friendly" transportation option than using biomass to produce ethanol fuel, according to an analysis published in Science in May. "You make more efficient use of the land and more efficient use of the plant biomass by making electricity rather than ethanol," said Elliott Campbell, an environmental scientist at the University of California at Merced, who led the research. "It's another reason that, rather than race to liquid biofuels, we should consider other uses of bio-resources."
For bioenergy to become a widespread climate solution, technological breakthroughs are necessary, analysts say. Researchers continue to search for more cost-effective developments in both cellulosic ethanol and advanced vehicle batteries.[84]
For each billion ethanol-equivalent gallons of fuel produced and combusted in the US, the combined climate-change and health costs are $469 million for gasoline, $472–952 million for corn ethanol depending on biorefinery heat source (natural gas, corn stover, or coal) and technology, but only $123–208 million for cellulosic ethanol depending on feedstock (prairie biomass, Miscanthus, corn stover, or switchgrass).[85]
As ethanol yields improve or different feedstocks are introduced, ethanol production may become more economically feasible in the US. Currently, research on improving ethanol yields from each unit of corn is underway using biotechnology. Also, as long as oil prices remain high, the economical use of other feedstocks, such as cellulose, become viable. By-products such as straw or wood chips can be converted to ethanol. Fast growing species like switchgrass can be grown on land not suitable for other cash crops and yield high levels of ethanol per unit area.[59]
Crop | Annual yield (Liters/hectare, US gal/acre) | Greenhouse-gas savings vs. petrol[a] |
Comments | |
---|---|---|---|---|
Miscanthus | 7300 L/ha, 780 g/acre |
37%–73% | Low-input perennial grass. Ethanol production depends on development of cellulosic technology. | |
Switchgrass | 3100–7600 L/ha, 330–810 g/acre |
37%–73% | Low-input perennial grass. Ethanol production depends on development of cellulosic technology. Breeding efforts underway to increase yields. Higher biomass production possible with mixed species of perennial grasses. | |
Poplar | 3700–6000 L/ha, 400–640 g/acre |
51%–100% | Fast-growing tree. Ethanol production depends on development of cellulosic technology. Completion of genomic sequencing project will aid breeding efforts to increase yields. | |
Sugar cane | 6800–8000 L/ha,[56][86][87][88] 727–870 g/acre |
87%–96% | Long-season annual grass. Used as feedstock for most bioethanol produced in Brazil. Newer processing plants burn residues not used for ethanol to generate electricity. Grows only in tropical and subtropical climates. | |
Sweet sorghum | 2500–7000 L/ha, 270–750 g/acre |
No data | Low-input annual grass. Ethanol production possible using existing technology. Grows in tropical and temperate climates, but highest ethanol yield estimates assume multiple crops per year (possible only in tropical climates). Does not store well.[89][90][91][92] | |
Corn | 3100–4000 L/ha,[56][86][87][88] 330–424 g/acre |
10%–20% | High-input annual grass. Used as feedstock for most bioethanol produced in USA. Only kernels can be processed using available technology; development of commercial cellulosic technology would allow stover to be used and increase ethanol yield by 1,100 - 2,000 litres/ha. | |
Source (except those indicated): Nature 444 (7 December 2006): 673-676. [a] - Savings of GHG emissions assuming no land use change (using existing crop lands). |
One rationale given for extensive ethanol production in the U.S. is its benefit to energy security, by shifting the need for some foreign-produced oil to domestically produced energy sources.[93][94] Production of ethanol requires significant energy, but current U.S. production derives most of that energy from coal, natural gas and other sources, rather than oil.[95] Because 66% of oil consumed in the U.S. is imported, compared to a net surplus of coal and just 16% of natural gas (2006 figures),[96] the displacement of oil-based fuels to ethanol produces a net shift from foreign to domestic U.S. energy sources.
According to a 2008 analysis by Iowa State University, the growth in US ethanol production has caused retail gasoline prices to be US $0.29 to US $0.40 per gallon lower than would otherwise have been the case.[97]
There are various social, economic, environmental and technical issues with biofuel production and use, which have been discussed in the popular media and scientific journals. These include: the effect of moderating oil prices, the "food vs fuel" debate, poverty reduction potential, carbon emissions levels, sustainable biofuel production, deforestation and soil erosion, loss of biodiversity, impact on water resources, as well as energy balance and efficiency.
Ethanol fuel may also be utilized as a rocket fuel. As of 2010[update], small quantities of ethanol are used in lightweight rocket-racing aircraft.[98]
There is still extensive use of kerosene for lighting and cooking in less developed countries, and ethanol can have a role in reducing petroleum dependency in this use too. A non profit named Project Gaia seeks to spread the use of ethanol stoves to replace wood, charcoal and kerosene.[99] There is also potential for bioethanol replacing some kerosene use in domestic lighting from feedstocks grown locally. A 50% ethanol water mixture has been tested in specially designed stoves and lanterns for rural areas.
|
|
|