Epiandrosterone

Epiandrosterone
Systematic (IUPAC) name
(3S,5S,8R,9S,10S,13S,14S)-3-hydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,
Clinical data
Pregnancy cat.  ?
Legal status  ?
Identifiers
CAS number 481-29-8
ATC code None
PubChem CID 441302
ChemSpider 390065 Y
UNII 8TR252Z538 Y
ChEBI CHEBI:541975 Y
ChEMBL CHEMBL272195 Y
Chemical data
Formula C19H30O2 
Mol. mass 290.440 g/mol
SMILES eMolecules & PubChem
 Y(what is this?)  (verify)

Epiandrosterone is a steroid hormone with weak androgenic activity. It is a natural metabolite of dehydroepiandrosterone via the 5-alpha reductase enzyme. It was first isolated in 1931, by Adolf Friedrich Johann Butenandt and Kurt Tscherning. They distilled over 17000 litres of male urine, from which they got 50 milligrams of crystalline androsterone (most likely mixed isomers), which was sufficient to find that the chemical formula was very similar to estrone.

Epiandrosterone has been shown to naturally occur in most mammals including pigs.[1]

Epiandrosterone is naturally produced by the enzyme 5-alpha reductase from the adrenal hormone dehydroepiandrosterone (DHEA).[2][3][4][5] Epiandrosterone can also be converted from the natural steroids androstanediol via 17β-hydroxysteroid dehydrogenase or from androstanedione via 3β-hydroxysteroid dehydrogenase.

Synonyms for epiandrosterone are: 3-epiandrosterone; 3β-androsterone; 3β-hydroxyetioallocholan-17-one; 5α-androstan-17-one, 3β-hydroxy-; 5β-androstan-17-one; and 3-β-hydroxyetiollocholan-17-one

See also

References

  1. ^ Raeside JI, Renaud RL, Marshall DE. Identification of 5 alpha-androstane-3 beta,17 beta-diol and 3 beta-hydroxy-5 alpha-androstan-17-one sulfates as quantitatively significant secretory products of porcine Leydig cells and their presence in testicular venous blood. J Steroid Biochem Mol Biol. 42(1):113-20, 1992
  2. ^ Callies F, Arlt W, Siekmann L, Hübler D, Bidlingmaier F, Allolio B. Influence of oral dehydroepiandrosterone (DHEA) on urinary steroid metabolites in males and females. Steroids. 65(2):98-102, 2000
  3. ^ Labrie F, Cusan L, Gomez JL, Martel C, Bérubé R, Bélanger P, Chaussade V, Deloche C, Leclaire J. Changes in serum DHEA and eleven of its metabolites during 12-month percutaneous administration of DHEA. J Steroid Biochem Mol Biol. 2008 May;110(1-2):1-9
  4. ^ Daniël Henri van de Kerkhof. Steroid profiling in doping analysis. [S.l.] : [s.n.], 2001 - Tekst. - Proefschrift Universiteit Utrecht
  5. ^ Acacio BD, Stanczyk FZ, Mullin P, Saadat P, Jafarian N, Sokol RZ. Pharmacokinetics of dehydroepiandrosterone and its metabolites after long-term daily oral administration to healthy young men. Fertil Steril. Mar;81(3):595-604, 2004

Further reading

  1. Simons RG, Grinwich DL. Immunoreactive detection of four mammalian steroids in plants. Can J Bot 67: 288-296, 1989
  2. Janeczko A, Skoczowski A. Mammalian sex hormones in plants. Folia Histochem Cytobiol. 2005;43(2):71-9.Labrie F, Bélanger A, Labrie C, Candas B, Cusan L, Gomez 4. JL. Bioavailability and metabolism of oral and percutaneous dehydroepiandrosterone in postmenopausal women. J Steroid Biochem Mol Biol. 107(1-2):57-69, 2007
  3. Uralets VP, Gillette PA. Over-the-counter delta5 anabolic steroids 5-androsen-3,17-dione; 5-androsten-3beta, 17beta-diol; dehydroepiandrosterone; and 19-nor-5-androsten-3,17-dione: excretion studies in men. J Anal Toxicol. 24(3):188-93, 2000