The energy tower is a device for producing electrical power. The brainchild of Dr. Phillip Carlson,[1] expanded by Professor Dan Zaslavsky and Dr. Rami Guetta from the Technion.[2] Energy towers spray water on hot air at the top of the tower, making the cooled air fall through the tower and drive a turbine at the tower's bottom.
Contents |
An energy tower (also known as a downdraft energy tower because the air flows down the tower) is a tall (1,000 meters) wide (400 meters) hollow cylinder with a water spray system at the top. Pumps lift the water to the top of the tower and then spray the water inside the tower. Evaporation of water cools the hot, dry air hovering at the top. The cooled air, now denser than the outside warmer air, falls through the cylinder, spinning a turbine at the bottom. The turbine drives a generator which produces the electricity.
The greater the temperature difference between the air and water, the greater the energy efficiency. Therefore, downdraft energy towers should work best in a hot dry climate. Energy towers require large quantities of water. Salt water is acceptable, although care must be taken to prevent corrosion.
The energy that is extracted from the air is ultimately derived from the Sun, so this can be considered a form of solar power. Unusually, this form of solar power also works at night, because air retains some of the day's heat after dark. However, power generation by the Energy tower is affected by the weather: it slows down each time the ambient humidity increases (such as during a rainstorm), or the temperature falls.
A related approach is the solar updraft tower, which heats air in glass enclosures at ground level and sends the heated air up a tower to drive a turbine at the top. Updraft towers do not pump water, which increases their efficiency, but do require large amounts of land for the collectors. Land acquisition and collector construction costs for updraft towers must be compared to pumping infrastructure costs for downdraft collectors. Operationally, maintaining the collector structures for updraft towers must be compared to pumping costs and pump infrastructure maintenance.
Zaslavsky, et al., estimate that depending on the site and financing costs, costs would be in the range of 1-4 cents per kwh, well below alternative energy sources other than hydro. Pumping the water requires about 50% of the turbine's output. Zaslavsky claims that the Energy Tower would achieve up to 70-80% [3] of the Carnot limit. If the conversion efficiency turns out to be much lower it is expected to have an adverse impact on projections made for Cost of Energy.
Projections made by Altmann[4] and by Czisch[5][6] about conversion efficiency and about Cost of Energy (cents/kWh) are based only on model calculations[7], no data on a working pilot plant have ever been collected.
Actual measurements on the 50 kW Manzanares pilot solar updraft tower found a conversion efficiency of 0.53%, although SBP believe that this could be increased to 1.3% in a large and improved 100MW unit.[8] This amounts to about 10% of the theoretical limit for the Carnot cycle. It is not unreasonable to expect a similar low conversion efficiency for the Energy tower, in view of the fact that it is based on a similar principle as the solar updraft tower.
Currently, no known commercial implementation of an energy tower exists.
Large industrial consumers often locate near cheap sources of electricity. However, many of these desert regions also lack necessary infrastructure, increasing capital requirements and overall risk.